Validação Cientifica Efícácia contra Obesidade

Indian Journal of
Open Science Publications
01 ISSN: 2395-2326
In order to contribute to the management of hypertension, this study investigated the effects of regular supplementation with Moringa oleifera leaf
powder on blood pressure of normal and obese hypertensive patients attending the diabetes and high blood clinic of the Regional Hospital in Ngaoundere.
Sixty hypertensive individuals aged 28-57 years participated in the study. They were divided into two groups; group 1 consisted of normal weight (25
women and 5 men, BMI = 21.97±2.15 Kg /m2
) and group 2 of obese (25 women and 5 men, BMI= 32.33±1.10 Kg/m2
) hypertensive patients. Anthropometric
parameters, blood pressure and the frequency of urinary excretion were measured at the start of the study and once every 30 days for 6 months following daily
supplementation with 30 g of M. oleifera leaf powder. At the end of the study, results show that, obese individuals benefited more from supplementation than
normal weight subjects. Supplementation decreased body weight (3.2%), BMI (3.6%), waist circumference (2.5%), hip circumference (4.4%) more in obese
group 2 compared to group 1, body weight (2.3%), BMI (2.3%), waist circumference (1.3%), hip circumference (2.9%). As concerns blood pressure, obese
people again benefitted more with diastolic pressure dropping down by 14.63 mmHg (16%) in obese against 6.23 mmHg (7.3%) in normal weight subjects.
With regards to systolic blood pressure, it decreased more 10.53 mmHg (6.5%) in normal weight compared to 6.86 mmHg (4.2%) in obese patients. Urine
frequency increased significantly (p<0.05) in both groups. M oleifera leaf powder has hypotensive properties and promotes weight loss. Thus Moringa has an
added advantage when used in the management of hypertension in obese patients.
Keywords: Moringao leifera; Hypertension; Normal weight hypertensive patients; Obese hypertensive patients; Dietary supplementation
Volume 3, Issue 2 - 2016
© Edith N. Fombang. 2016
Management of Hypertension in Normal
and Obese Hypertensive Patients through
Supplementation with Moringa oleifera Lam Leaf
Research Article
Edith N. Fombang1*, BlaiseBouba1 and Ngaroua2
Department of Food Science and Nutrition, National School of Agro-Industrial Sciences, ENSAI, University of Ngaoundere,
Adamawa Region, Cameroon
Department of Biomedical Sciences, Faculty of Science University of Ngaoundere, Cameroon
*Corresponding author: Edith N. Fombang, Department of Food Science and Nutrition, National School of Agro-Industrial
Sciences, ENSAI, University of Ngaoundere, Adamawa Region, Cameroon, Tel: ( 237) 675 19 57 86; E-mail: [email protected]
Article Information: Submission: 28/08/2016; Accepted: 28/09/2016; Published: 04/10/2016
Copyright: © 2016 Edith N. Fombang et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.
Today non-communicable diseases NCDs (cancer, chronic
respiratory diseases, diabetes and cardiovascular diseases CVD)
constitute a serious threat to human health. They are the leading
causes of death worldwide, responsible each year 60% of all deaths
globally [1]. Of these, CVD is the leading noncommunicable
disease; accounting for nearly half of the 36 million deaths due to
noncommunicable diseases (NCDs), with 80% occurring in low and
middle income countries [1]. Ten percent of global disease burden
is attributed to CVDs, reason why WHO has developed a global
action plan against these diseases [2]. The fight against cardiovascular
disease has an important place in this plan, including the fight against
high blood pressure (hypertension). This plan focuses on lifestyle
modification and diet changes.
Citation: Fombang EN, Bouba B, Ngaroua. Management of Hypertension in Normal and Obese Hypertensive Patients through Supplementation with
02 Moringa oleifera Lam Leaf Powder. Indian J Nutri. 2016;3(2): 143.
Hypertension is a key risk factor for cardiovascular disease [1].
Worldwide, hypertension is the third largest risk factor contributing
to mortality after malnutrition and smoking [3]. It contributes to
coronary heart disease and heart and kidney failure. The prevalence
of hypertension is increasing in developing countries [1] possibly
in relation to the aging population, urbanization and changing
food habits that promote obesity. Obesity is a risk factor for NCDs
including hypertension.
Despite advances in the prevention and treatment of hypertension
over the past decade, hypertension remains an important public
health challenge. Recent efforts to reduce the prevalence of
hypertension have focused on non-pharmacologic means, specifically
diet [4]. Antihypertensive therapies always appeal to lifestyle changes,
correction of associated metabolic disorders (hypercholesterolemia,
diabetes) and various drug classes; but in spite of all these,
hypertension is still on the rise.
The cost of care and management of hypertension remains
elevated in our communities and consequently most persons are
resorting to medicinal plants for a solution. Amongst the many
traditional remedies used in the management and treatment of
hypertension, Moringa oleifera, a plant native to India but widely
cultivated in Africa has found its place among the ranks. It has
been shown to possess hypotensive [5,6], hypocholesterolemic and
antihyperlipidemic [4,7,8] properties. Most studies that investigated
the hypotensive effects of M. Oleifera did not consider the weight status
of the patients in their study design; neither did they compare results
in normal and obese patients. In addition to possessing hypotensive
properties, M. Oleifera has also been shown to contribute to weight
loss [9] and obesity is a risk factor for hypertension. This study was
therefore designed to evaluate the effects of regular supplementation
with Moringa oleifera leaf powder on blood pressure of normal and
obese hypertensive patients.
Materials and Methods
Study Site
The study was carried out at the Ngaoundere Regional Hospital
for a period of six months from March to September 2014.The study
was done in collaboration with the health personnel working in the
said clinic.
The target sample for our study consisted of men and women
coming for consultation at the Diabetes and high blood pressure
clinic at the Ngaoundere Regional Hospital. From this population,
men and women at least 25 years old, hypertensive, obese (BMI >
30 kg/m2
) or normal weight (BMI between 18.2 and 24.9 kg/m2
not pregnant, not on any medication for hypertension, not on a low
salt diet, having a systolic blood pressure (SBP) of ≥ 140 mmHg and
a diastolic blood pressure (DBP) of ≥ 90 mmHg, be available for
regular weekly meetings and having given their informed consent to
participate in the study by signing a consent form; were recruited for
the study. All those who did not meet these criteria were excluded
from the study. The study was approved by the ethics committee of
the Ngaoundere Regional Hospital.
Execution of study
Following selection of subjects as per the inclusion criteria, 60
subjects were recruited and divided in to 2 groups of 30 persons
each; Group 1, normal weight hypertensive individuals and Group
2, obese hypertensive individuals. Baseline parameters for both
groups were taken on day 1 and thereafter subject’s diets were
supplemented with 30 g of Moringa oleifera leaf powder daily. This
powder was given to them weekly in sachets of 30 g representing a
daily dose. The intervention period lasted for 24 weeks (6 months).
Measurement of baseline parameters was repeated monthly for a total
of 6 times throughout the duration of the study and values compared.
Parameters measured were anthropometric (Age, weight, height,
waist circumference, hip circumference, waist hip ratio) and clinical
parameters (systolic and diastolic blood pressure; urine frequency).
Methods of Measurement
Measurement of anthropometric parameters
Weight was measured in kilograms using a mechanical balance
(Camry brand) with a weighing capacity of 1 to 150 kg in 200g
divisions. The subjects were measured bare footed with minimal
Height was measured in meters using a stadiometer with a
movable head piece graduated to 250 cm. The subject stands erect
& bare footed on the stadiometer. The head piece is leveled with the
skull vault and the height is recorded to the nearest 0.5 cm.
Body mass Index BMI was calculated using the formula
BMI= Weight / Height2
Following BMI measurements subjects were classified in to
normal weight and obese based on the following classification [10].
BMI: 18.5 - 24.9 kg/m2 normal weight;
BMI > 30 kg/m2
Waist and hip circumference which are indications of fat
distribution in the body were measured using a non-stretchable
tape (type Oranta), length 150 cm, graduated to a millimeter. Waist
circumference was measured at the level of the navel, while hip
circumference was measured at the level of the hips, considering the
area of largest circumference.
Waist Hip Ratio (WHR) was calculated as the ratio of the waist
to hip circumference. A high WHR is an indication of central obesity
which is a risk factor for heart diseases, hypertension and diabetes.
This ratio varies with sex. A WHR greater than 90 in men and 80 in
women is indicative of central obesity [10].
Measurement of Clinical Parameters
Measurement of Blood Pressure: Blood pressure was taken with
the individual sitting and using a digital blood pressure monitor
(Omron Hem 712C) with arm cuff. The individual was allowed to sit
quietly for 10 minutes, and cuff pressure gauge and the strain saddled
around his arm. The apparatus was turned on. The reading was taken
at the end of the operation from the display screen of the apparatus
Citation: Fombang EN, Bouba B, Ngaroua. Management of Hypertension in Normal and Obese Hypertensive Patients through Supplementation with
03 Moringa oleifera Lam Leaf Powder. Indian J Nutri. 2016;3(2): 143.
patients were asked to monitor their urine frequency and to note
it. The base level was considered as zero and the increase above that
Preparation of M. oleifera powder
Moringa leaves were obtained from Maroua in the far North
Region of Cameroon. Leaflets were detached from stems, washed
with tap water, drained in plastic colanders and dried under shade
(average temperature 27 ± 4 °
C)protected from dust and insects with
a mosquito net. Leaves were overturned periodically throughout the
duration of drying which took between 3 to 4 days. Dried leaves were
ground into powder using a hammer mill, packaged in sachets of 30 g
each and stored in glass bottles away from light.
Statistical Analyses
Collected data was entered in to Excel (Microsoft cooperation Inc.)
and means and standard deviations calculated. Analysis of Variance
was carried out and means were separated using the Duncan’s
multiple range test at a probability level of 95% using Statgraphics
Plus 5.0 software. Results are expressed as mean ± standard deviation.
Anthropometric and clinical characteristics of patients
Both study groups are homogeneous in terms of gender (25
women and 5 men each), height (1.67 m and 1.62 m for group 1
and 2 respectively), and age (41.10 and 41.37 years respectively for
group 1 and 2) (Table 1). As concerns weight, subjects in Group 1 had
significantly (p<0.05) lower weights (61.43 ± 6.14 kg), compared to
those in group 2 (84.83 ± 7.17 kg) consistent with the fact that group
1 was normal weight individuals while group 2 was made up of obese
individuals. BMI, waist and hip circumference were significantly
higher (p<0.05) in obese group 2 compared to normal weight group
1 (Table 1). WHR on its part was comparable in both groups Table 2.
Both systolic and diastolic blood pressures were comparable in
both groups. Systolic blood pressure was 161.43 mmHg in group 1
and 164.63 mmHg in group 2, whereas Diastolic blood pressure was
85.60 and 91.53 mmHg respectively in groups 1 and 2.
Changes in Anthropometric parameters with Moringa leaf
powder supplementation
Supplementation of patients’ diets with Moringa leaf powder over
a period of six months brought about reductions in weight, waist and
hip circumferences in both groups. Although these decreases were not
significant they were slightly higher in the obese group 2 compared to
group 1. BMI on the other hand was significantly (p<0.05) reduced
in group 2 after 6 months of supplementation with Moringa leaf
powder. The reduction in BMI in group 1 was not significant. Waist
hip ratio increased slightly with Moringa supplementation in both
normal and obese patients.
Changes in clinical parameters with Moringa leaf powder
Important decreases were recorded in SBP and DBP over time
in both groups with Moringa supplementation (Table 3). Reductions
were evident as from the first month of supplementation and
continued throughout the experimental period. At the end of the
6 months intervention period, SBP decreased by 6.5% and 4.2%
respectively in both groups 1 and 2, while DBP recorded a slightly
higher drop (7.3% and 16% respectively in group 1 and 2). Decrease
in DBP was significant (p<0.05) as from the fifth month in group
2.Urine frequency increased with consumption of Moringa oleifera
leaf powder. These increases were however significant (p<0.05) only
as from 90 days in group 1 and 60 days in group 2 (Table 3). Compared
to values at one month, urine frequency at the end of the six months
study increased by 41.9% in group 1 and by 27.2% in group 2.
This study had as objective to investigate the effect on blood
pressure of supplementing Moringa oleifera leaf powder in diets of
normal weight and obese hypertensive individuals. The two groups,
normal weight hypertensive (Group 1) and obese hypertensive (Group
2) were homogeneous in terms of number, gender and height. The
individuals in the group 2 weighed more given their obese status and
consequently had a higher BMI (32.33 kg/m2
)compared to normal
weight group 1 (21.97kg/m2
).Given that majority of the members
in the groups were women, cut off values for women for waist and
hip circumference, as well as WHR were considered in interpreting
these results. In this regard, central obesity was present in both
groups as indicated by their WHR which was above the risk threshold
of > 0.8 (Table 1). Central obesity is a risk factor for heart disease,
hypertension and diabetes [10]. Values of systolic and diastolic blood
pressure (Table 1) affirmed that these patients were hypertensive [1].
Regular consumption of Moringa has been shown to reduce
cholesterol, triglycerides, LDL-C levels and body weight in animal
models [4,7,8] and could explain the reductions observed in body
weight, waist and hip circumference in this study considering that
the subjects were not on any weight loss diet or medications. The
loss in weight thus contributed to the reduction in BMI recorded in
both groups. Naznin et al. [9] working on rats, observed a significant
decrease in their body weight after intraperitoneal administration
of decoctions of M. oleifera leaves for 8 days, and attributed this
to reduction in serum triglycerides and cholesterol. Since fat
accumulates around the waist and hip area, and reduction in fat with
consumption of Moringa leaf powder has been reported [7], this could
explain the drop in waist circumference (WC) and hip circumference
Parameter Group 1 Group 2
Age (Years) 41.10 ± 8.38a 41.3 ± 7.57a
Height (m) 1.67 ±0.07a 1.62 ± 0.05a
Weight (kg) 61.43 ± 6.14a 84.83 ± 7.17b
Body Mass Index (kg/m2) 21.97 ± 2.15a 32.33 ± 2.00b
Waist circumference (cm) 81.30 ± 8.69a 91.67 ± 9.21b
Hip Circumference (cm) 98.40 ± 6.24a 109.70 ± 9.03b
Waist Hip Ratio 0.82 ± 0.05a 0.84 ± 0.06a
Systolic blood pressure (mmHg) 161.43 ± 22.59a 164.63 ± 22.02a
Diastolic Blood Pressure (mmHg) 85.60 ± 8.27a 91.53 ± 11.74a
Table 1: Baseline Anthropometric and Clinical parameters of hypertensive
Values in the same row with different superscript are significantly(p<0.05)
Citation: Fombang EN, Bouba B, Ngaroua. Management of Hypertension in Normal and Obese Hypertensive Patients through Supplementation with
04 Moringa oleifera Lam Leaf Powder. Indian J Nutri. 2016;3(2): 143.
(HC) following supplementation. HC decreased more (2.9 and 4.4%)
compared to WC (2.4 and 1.2%) in groups 1 and 2 respectively. WHR
on the contrary appeared to increase slightly possibly as a result of
the higher decrease in HC compared to WC. The higher differences
observed with the obese group 2 compared to group 1 may be related
to the fact that the obese group have more stored lipids and cholesterol
and as such the effect on these components is more evident in them.
Daily supplementation of patients diets with Moringa leaf powder
was beneficial as it significantly (P<0.05) reduced systolic and diastolic
blood pressure in both groups, although only DBP was reduced down
to normal levels (< 80 mmHg) at the end of intervention.
Moringa leaves contain tannins and flavonoids which are known
to increase capillary resistance, venous tone and stability of collagen.
They have inhibitory activities on decarboxylase, elastase and
angiotensin converting enzyme thus reducing circulating angiotensin[4,11]. These properties contribute to the efficacy of Moringa oleifera
leaf powder in reducing blood pressure in hypertensive individuals.
Moringa leaves equally possess antioxidant properties which could
fight oxidative stress; a contributing factor to hypertension [1,5].
Flavonol quercetins of dried M. oleifera leaves  have equally shown
anti-dyslipidemic, hypotensive, and anti-diabetic effects in obese
Zucker rat model with metabolic syndrome. Its hypotensive effect has
been confirmed in human studies [4].
Increase in urinary frequency implies much water and possibly
sodium is eliminated from the system and consequently blood
pressure is reduced [12]. This could also be one of the mechanisms
by which Moringa leaf powder lowers blood pressure. Tejas et al.[13], mentioned that ingestion of a decoction of M. oleifera leaves
increased urinary output in rats.
Moringa’s widespread combination of diuretics along with lipid
and blood pressure lowering properties make it useful in managing
cardiovascular diseases. Its blood pressure lowering effect has
been attributed to isothiocyanates and thiocarbamate glycosides,
hypotensive principles that have been isolated from Moringa leaves[5,6]. Moringa’s high content of potassium may also be a contributing
factor to its hypotensive effect as documented evidence shows that
diets high in potassium and potassium supplementation significantly
lower blood pressure [14].
This study highlights the fact that Moringa oleifera leaf powder
could be used as a hypotensive in the management of hypertension;
and more especially that obese hypertensive patients could benefit
more from using this powder as it additionally promotes weight loss
thereby improving its efficacy as a hypotensive.
Thus consumption of Moringa leaf powder could be beneficial
for weight loss and reducing blood pressure as well as for preventing
other diseases which have obesity as risk factor. Obese subjects could
derive important benefits from consuming Moringa powder.
1. World Health Organization (2013) A global brief on Hypertension. WHO
Press, Geneva, Switzerland.
2. World Health Organization (2013) Global action plan for the prevention and
control of noncommunicable diseases 2013-2020. WHO Press, Geneva,
3. Murray CJL (2015) Global, regional, and national comparative risk
assessment of 79 behavioural, environmental and occupational, and
metabolic risks or clusters of risks in 188 countries, 1990-2013: a systematic
analysis for the Global Burden of Disease Study 2013. Lancet 386: 2287-
Weight (kg) Waist circumference (cm) Hip Circumference Waist Hip Ratio Body Mass Index (kg/m2
Time/days Group 1 Group 2 Group 1 Group 2 Group 1 Group 2 Group 1 Group 2 Group 1 Group 2
0 61.43 ± 6.14a 84.83 ± 7.17a 81.30 ± 8.69a 91.67 ± 9.21a 98.40 ± 6.24a 109.70 ± 9.03a 0.82 ± 0.05a 0.84 ± 0.06a 21.97 ± 2.15a 32.33 ± 2.00a
30 61.07 ± 6.02a 83.50 ± 6.46a 81.17 ± 8.5 a 90.80 ± 9.00a 97.83 ± 5.85a 108.73 ± 8.82a 0.83 ± 0.05a 0.84 ± 0.06a 21.89 ± 2.09a 31.66 ± 1.64a
60 60.43 ±6.15 a 83.17 ± 6.44a 80.77 ± 8.43a 90.90 ± 8.85a 96.83 ± 6.02a 107.70 ± 8.93a 0.83 ± 0.05a 0.85 ± 0.06a 21.62 ± 2.08a 31.49 ± 1.59a
90 60.10 ± 6.07a 82.53 ± 6.53a 80.50 ± 8.59a 89.83 ± 8.52a 96.17 ± 6.08a 105.83 ± 9.43a 0.84 ± 0.05a 0.85 ± 0.07a 21.51 ± 2.06a 31.25 ± 1.61a
120 60.07 ± 6.06a 82.27 ± 6.66a 80.38 ± 8.45a 89.60 ± 8.72a 95.63 ± 5.59a 105.30 ± 9.54a 0.84 ± 0.05a 0.85 ± 0.06a 21.46 ± 2.07a 31.24 ± 1.64a
150 60.00 ± 5.89a 82.10 ± 6.85a 80.27 ± 8.25a 89.40 ± 8.93a 95.50 ± 5.48a 104.83 ± 9.84a 0.84 ± 0.05a 0.85 ± 0.06a 21.46 ± 2.08a 31.17 ± 1.7b
Table 2: Changes in Anthropometric parameters of hypertensive individuals with time following Moringa oleifera supplementation.
Values in the same column with different superscript are significantly (p<0.05)different
Systolic Blood Pressure (mmHg) Diastolic Blood Pressure (mmHg) Urinary Excretion (Frequency)
Time/days Group 1 Group 2 Group 1 Group 2 Group 1 Group 2
0 161.43 ± 22.59a 164.63 ± 22.02a 85.60 ± 8.27a 91.53 ± 11.74a
30 158.87 ± 17.44a 163.30 ± 17.15a 85.00 ± 8.85a 88.83 ± 10.82a 0.93 ± 0.37a 1.07 ± 0.37a
60 157.43 ± 15.02a 161.83 ± 16.46a 83.83 ± 8.42a 86.43 ± 9.73a 1.13 ± 0.43a 1.30 ± 0.47b
90 156.60 ± 12.04a 159.13 ± 14.71a 81.87 ± 7.47a 84.23 ± 9.12a 1.43 ± 0.50b 1.30 ± 0.4b
120 156.17 ± 10.69a 157.17 ± 14.37a 80.13 ± 6.46a 81.07 ± 7.64b 1.53 ± 0.57b 1.30 ± 0.46b
150 150.90 ± 7.62a 157.77 ± 10.75a 79.37 ± 5.82a 76.90 ± 10.60b 1.60 ± 0.50b 1.47 ± 0.57b
Table 3: Changes in clinical parameters of hypertensive individuals with time following Moringa oleifera supplementation.
Values in the same column with different superscript are significantly (p<0.05) different.
Citation: Fombang EN, Bouba B, Ngaroua. Management of Hypertension in Normal and Obese Hypertensive Patients through Supplementation with
05 Moringa oleifera Lam Leaf Powder. Indian J Nutri. 2016;3(2): 143.
4. MbikayM (2012) Therapeutic potential of Moringa oleifera leaves in chronic
hyperglycemia and dyslipidemia: A review. Front Pharmacol 3: 24.
5. Biswas SK, Chowdhury A, Das J, Roy A, Hosen SMZ (2012) Pharmacological
potentials of moringa oleifera lam.: a review. International Journal of
Pharmaceutical Sciences and Research 3: 305-310.
6. Kumar PS, Mishra D, Ghosh G, Panda CS (2010) Medicinal uses and
pharmacological properties of Moringa oleifera. International Journal of
Phytomedicine 2: 210-216.
7. Oinam N, Urooj A, Preetham PP, Niranjan NP (2012) Effect of Dietary Lipids
and Drumstick Leaves (Moringa oleifera) on Lipid Profile and Antioxidant
Parameters in Rats. Food and Nutrition Sciences 3: 141-145.
8. Ghasi S, Nwobodo E, Ofili JO (2000) Hypocholesterolemic effects of crude
extract of leaf of Moringa oleifera Lam in high-fat diet fed Wistar rats. J
Ethnopharmacol 69: 21-25.
9. Naznin A, Mamunur R, Shah A (2008) Comparison of Moringa oleifera
leaves extract with atenolol on serum triglyceride, serum cholesterol, blood
glucose, heart weight, body weight in adrenaline induced rats. Saudi Journal
of Biological Sciences 15: 253-258.
10. Whitney E, Sharon RR (2011) Understanding Nutrition. (12thedn) Belmont,
CA: Wadsworth, pp 620-625.
11. Khurana S, VenkataramanK, Hollingsworth A, PicheM, Tai TC (2013)
Polyphenols: benefits to the cardiovascular system in health and in aging.
Nutrients 5: 3779-3827.
12. Shah SU, Anjum S, Littler WA (2004) Use of diuretics in cardiovascular
disease: (2) hypertension. Postgrad Med J 80: 271-276.
13. Tejas GH, Joshi UH, Bhalodia PN, Desai TR, Tirgar P (2012) A panoramic
view on pharmacognostic, pharmacological, nutritional, therapeutic and
prophylactic values of Moringa oleifera Lam. International Research Journal
of Pharmacy. 3: 1-7.
14. Houston MC, Harper KJ (2008) Potassium, magnesium, and calcium: their
role in both the cause and treatment of hypertension. J Clin Hypertens
(Greenwich) 10(7 Suppl 2): 3-11.

Fonte -

Validação Cientifica Efícácia Proteção Cardíaca



Hypertension is characterized by a maintained high blood pressure leading to cardiac complications such as left ventricular hypertrophy and fibrosis and an increased risk of heart failure and myocardial infarction. This study investigated the cardiac effects of oral administration of Moringa oleifera (MOI) seed powder in spontaneous hypertensive rats (SHR).


SHR received food containing MOI seed powder (750mg/d, 8 weeks) or normal food. In vivo measurement of hemodynamic parameters by telemetry and cardiac structure and function analysis by echocardiography were performed. Histological studies were performed to determine fibrosis and protein expression.


MOI treatment did not modify blood pressure in SHR but reduced nocturnal heart rate and improved cardiac diastolic function (reduction of isovolumetric relaxation time and deceleration time of the E wave, increase of ejection volume and cardiac output compared to nontreated SHR). Left ventricular anterior wall thickness, interseptal thickness on diastole, and relative wall thickness were reduced after MOI treatment. Furthermore, we found a significant reduction of fibrosis in the left ventricle of MOI-treated SHR. This antihypertrophic and antifibrotic effect of MOI was associated with increased expression of peroxisome proliferator-activated receptor (PPAR)-α and δ, reduced cardiac triglyceride level, and enhanced plasmatic prostacyclins.


Our data show a beneficial effect of MOI on the cardiac structure and function in SHR associated with an upregulation of PPAR-α and δ signaling. This study thus provides scientific rational support for the empirical use of MOI in the traditional Malagasy medicine against cardiac diseases associated with blood pressure overload.

High blood pressure induces vascular and cardiac complications such as left ventricular hypertrophy, heart or kidney failure, myocardial infarction, stroke, and cognitive impairment. 1 Hypertension is a multifactorial disease involving both genetic and environmental factors. The causes of the increased blood pressure are generally unknown and numerous animal models have been developed to address the pathogenesis of hypertension. The spontaneous hypertensive rats (SHR), one of the most animal models used for this purpose, are characterized by an increased nervous-dependent noradrenaline release in the circulation, contributing to enhanced blood pressure. 2 These rats gradually develop left ventricular hypertrophy associated with impairment of both systolic and diastolic functions starting at 6 weeks of age. 3 Cardiac hypertrophy is accompanied by myocardial fibrosis that involves, at least in part, an alteration of peroxisome proliferator-activated receptor (PPAR)-α and/or δ signaling, known to participate in fatty acid catabolism in the heart. 4

Several previous studies reported beneficial effects of natural treatments using medicinal plants in experimental animal models of cardiovascular diseases. Some of these plants possess antihypertensive properties and improve both vascular and heart functions. 5–7 Bio-guided fractionation of these plant extracts suggested that active compounds such as coumarins and/or polyphenols with antioxidant and anti-inflammatory properties contribute to the efficiency of these plants against cardiovascular disorders. 7

Moringa oleifera (MOI; Moringaceae family) is a little tree used in folk medicine in tropical Africa, America, and Asia. Based on empiric knowledge, different parts of this plant (roots, leaves, and seeds) are used for several therapeutic applications in inflammatory, infectious, gastrointestinal, and cardiovascular diseases. 8–10 MOI seed oil contains phenols, and in particular flavonoids, with free radical scavenging activity. 11

The aim of this study was thus to assess possible beneficial effects of oral MOI seed treatment to ameliorate cardiac dysfunction and remodeling associated with high blood pressure in SHR. We provide some evidence of a protective role of this plant on the cardiac dysfunction induced by hypertension.



This study has been performed on male SHR of 16 weeks. Wistar Kyoto (WKY) rats of same age were also used for echography analysis. Animals were housed in acclimatized room (temperature 22±2 °C and hygrometry 55±4%). The circadian cycle was scheduled for 12 hours with light and 12 hours in dark and all the experiments were conducted in accordance with the international guidelines for care and use of laboratory animals. The animal protocols used have been approved by the National Ethical Committee (authorization number: 00909.01).

Hemodynamic parameter measurements

To measure hemodynamic parameters, arterial pressure, and heart rate (HR), a telemetric transmitter (TA 11PA-C40, DSI) was implanted surgically in the abdominal aorta of isoflurane-anaesthetized SHR. The hemodynamic values were measured after 1 week of transmitter implantation for 8 weeks. Rats were distributed in 2 groups: 6 in the control group (SHR CTRL) receiving normal food and 6 rats in the treated group (SHR MOI) receiving MOI seed powder mixed to the food (750mg/d/rat for 8 weeks). Cardiac function analysis was conducted by echocardiography after the treatment. At the end of the experimental protocol, all the rats were anesthetized by isoflurane inhalation and sacrificed by cervical dislocation to harvest blood samples and hearts.

Cardiac echocardiography

After the treatment, echocardiographic analyses were performed on isoflurane-anaesthetized SHR and WKY rats placed in left lateral decubitus position. A GE Vivid7 (GE Healthcare) apparatus equipped with S10 wave at 9 MHz transducer was used. The cardiac left ventricle (LV) geometry was investigated by measuring wall thickness (anterior, posterior, and interseptal), and shortening and ejection fraction were evaluated in time motion mode following small and large parasternal axis. The HR was continuously monitored and pulsed Doppler was used to assess isovolumetric relaxation time (IVRT).

The relative wall thickness (RWT) was calculated with Reid Hayward and Chia-ying Lien formula as follow: RWT = (LVPWTd IVSd)/LVDd, where LVPWTd represents LV posterior wall thickness on diastole; IVSd, the interventricular septal thickness on diastole; and LVDd, the LV diameter on diastole. Cardiac output was calculated as follow: CO = π × D 2/4 × IVTAo, where D represents the diameter of the aortic LV outflow tract and IVTAo, the velocity–time integral in the LV outflow tract. The LV mass (LV mass ) and the LV mass ratio to body weight (LV mass /BW) were also evaluated. LV mass was calculated as follow: LV mass = 1,04((LVDd LVPWTd IVSd) 3 − (LVDd) 3 ), according to Hayward and coworkers. 12

Tissue preparation for histological analysis

The hearts harvested from SHR CTRL and SHR MOI were rinsed with phosphate-buffered saline and fixed for 24 hours in 4% paraformaldehyde at room temperature and then processed routinely in paraffin. Serial 7 µm thick tissue sections from the middle levels of both ventricles were stained with picric acid-Sirius. In bright-field microscopy, sections had a pale pink background and collagen was stained in red. Collagen fibers were detected by polarized light microscopy and type I collagen fibers were stained in orange/red. Sections were observed with ×10 magnification using a Leica DMLB light microscope with cool-snap camera and orange/red collagen brightness level was evaluated using ImageJ software.

In another set of experiments, the sections were used for a semiquantitative assessment of proteins expression and tissue location. Heart sections were deparaffinized in tissue clear and fat was removed with 100% methanol, and then were incubated for 2 hours in a blocking buffer containing 5% bovine serum albumin. After an overnight incubation at 4 °C with a polyclonal rabbit antibody anti-PPARα (1:100, Abcam, France) or anti-PPARδ (1:100, Abcam, France), slides were washed and incubated with a secondary anti-rabbit antibody. After washes, labeling was revealed by 3.3-diaminobenzidine (DAB Kit Substrate, BD Biosciences). Hematoxylin and eosin were used to label nuclei and cytoplasm, respectively, of cells in the tissue. After washing, heart sections were mounted on glass slides and observed with ×60 magnification using a Nikon eclipse E600 light microscope equipped with a Nikon DS-Ri1 camera.

Cardiomyocyte size was also measured in histological preparations (length and wide calculated as the mean of 10 cardiomyocytes/LV of each heart).

ELISA measurements

Diacylglycerol and triglycerides were measured in cardiac LV lysates from SHR CTRL and SHR MOI using ELISA assay kits (MyBiosource and Abcam (France), respectively). Prostacyclin (PGI 2 ) metabolite was evaluated in rat plasma by ELISA assay kit from BlueGene (China).

Data analysis

A two-way analysis of variance for repeated measures and Bonferroni post hoctest were performed for telemetric experiences. A one-way analysis of variance with subsequent Tukey post hoc test or the analysis of variance on ranks was performed when 3 means were compared. An unpaired Student t -test or a Mann and Whitney test were used for comparison of 2 means. All the statistical analyses were performed with the Statview software (SAS Institute, Cary, NC). * P <0.05 was considered statistically significant. All values are presented as mean ± SEM, n represents the independent experiments or samples.


Effect of MOI treatment on blood pressure and HR

Telemetry records show that MOI treatment for 8 weeks did not change diurnal and nocturnal systolic and diastolic arterial pressures in SHR ( Figure 1a–d ). In contrast, MOI treatment induced a reduction of the nocturnal HR when animals were awake and active, without change in the diurnal HR ( Figure 1e , f ). This effect of MOI started to be significant after ten days of treatment ( Figure 1f ).

Figure 1.

Circadian hemodynamic parameters of SHR treated with MOI seeds compared with SHR control group. ( a , b ) Diurnal and nocturnal SAP, respectively. ( c,d ) Diurnal and nocturnal DAP, respectively. ( e , f ) Diurnal and nocturnal heart rate, respectively (mean ± SEM with n = 5–6, ###P < 0.001 SHR CTRL vs. SHR MOI). MOI treatment started at 17 weeks of age. Abbreviations: CTRL, control; DAP, diastolic arterial pressure; MOI, Moringa oleifera ; SAP, systolic arterial pressure; SHR, spontaneous hypertensive rat.

 Circadian hemodynamic parameters of SHR treated with MOI seeds compared with SHR control group. ( a , b ) Diurnal and nocturnal SAP, respectively. ( c,d ) Diurnal and nocturnal DAP, respectively. ( e , f ) Diurnal and nocturnal heart rate, respectively (mean ± SEM with n = 5–6, ###P < 0.001 SHR CTRL vs. SHR MOI). MOI treatment started at 17 weeks of age. Abbreviations: CTRL, control; DAP, diastolic arterial pressure; MOI, Moringa oleifera ; SAP, systolic arterial pressure; SHR, spontaneous hypertensive rat.

Effect of MOI treatment in cardiac structure and function

To detect potential cardiac structural differences between SHR CTRL and SHR MOI, transthoracic echocardiography was performed using normotensive WKY rats as reference. Increased LV anterior and posterior wall thicknesses on diastole (LVAWTd and LVPWTd) were found in SHR CTRL compared to WKY rats ( Figure 2a , b ). The IVSd and the RWT also were greater in SHR CTRL than in WKY rats ( Figure 2c , d ). These data attest the LV hypertrophy installation in SHR CTRL compared to normotensive rats. MOI treatment in SHR significantly reduced LVAWTd, IVSd, and RWT without changing the LVPWTd values ( Figure 2a–d ).

Figure 2.

Effects of MOI seeds on left ventricle cardiac hypertrophy in SHR. ( a ) LVAWTd: left ventricular anterior wall thickness on diastole. ( b ) LVPWTd: left ventricle posterior wall thickness on diastole. ( c) IVSd: interventricular septal thickness on diastole. ( d ) RWT: relative wall thickness. ( e,f ) LVIDd and LVIDs: left ventricular internal diameter on diastole or left ventricular internal diameter on systole. ( g,h ) LVVd and LVVs: left ventricular volume on diastole or left ventricular volume on systole. Results are expressed in mean ± SEM, n = 5–6, * P < 0.05, *** P < 0.001 WKY, white bars vs. SHR CTRL or SHR MOI, black bars, #P < 0.05, ##P < 0.01, ###P < 0.001 SHR CTRL vs. SHR MOI. Abbreviations: CTRL, control; MOI, Moringa oleifera ; SHR, spontaneous hypertensive rat; WKY, Wistar Kyoto.

 Effects of MOI seeds on left ventricle cardiac hypertrophy in SHR. ( a ) LVAWTd: left ventricular anterior wall thickness on diastole. ( b ) LVPWTd: left ventricle posterior wall thickness on diastole. ( c ) IVSd: interventricular septal thickness on diastole. ( d ) RWT: relative wall thickness. ( e,f ) LVIDd and LVIDs: left ventricular internal diameter on diastole or left ventricular internal diameter on systole. ( g,h ) LVVd and LVVs: left ventricular volume on diastole or left ventricular volume on systole. Results are expressed in mean ± SEM, n = 5–6, * P < 0.05, *** P < 0.001 WKY, white bars vs. SHR CTRL or SHR MOI, black bars, #P < 0.05, ##P < 0.01, ###P < 0.001 SHR CTRL vs. SHR MOI. Abbreviations: CTRL, control; MOI, Moringa oleifera ; SHR, spontaneous hypertensive rat; WKY, Wistar Kyoto.

The LV hypertrophy was confirmed by the significant increase of LV mass and LV mass /BW in both SHR CTRL and SHR MOI compared to WKY rats (LV mass : 678.84±33.16mg in WKY rats, 1005.02±52.50mg in SHR CTRL ( P < 0.001 vs. WKY), and 857.42±39.95 in SHR MOI ( P < 0.01 vs. WKY); LV mass /BW: 1.54±0.05mg/g in WKY rats, 2.33±0.13mg/g in SHR CTRL ( P < 0.001 vs. WKY), and 1.97±0.076 in SHR MOI ( P < 0.01 vs. WKY); n = 6 in each group of rats). Nevertheless, the significant decrease of LV mass and LV mass /BW in SHR MOI compared to SHR CTRL ( P < 0.05) suggests an antihypertrophic effect of MOI.

The left ventricular internal diastolic diameter (LVIDd) was significantly reduced in SHR CTRL and the treatment with MOI restored this parameter to a level comparable to that of WKY rats ( Figure 2e ) while the LV internal systolic diameter (LVIDs) was similar in the three groups of rats ( Figure 2f ). Interestingly, MOI treatment in SHR restored the volume of LV in diastole (LVVd), significantly reduced in SHR CTRL compared to WKY rats ( Figure 2g ). The LV volume in systole (LVVs) was similar in the 3 groups of rats ( Figure 2h ).

Concerning systolic ventricular function, the left ventricular fractional shortening was not significantly reduced in SHR CTRL and SHR MOI ( Figure 3a). Ejection fraction was significantly decreased in both SHR CTRL and SHR MOI compared to WKY rats, suggesting that MOI treatment was not able to ameliorate systolic ventricular function in SHR ( Figure 3b ). By contrast, the increased IVRT, attesting an impairment of diastolic function in SHR CTRL compared to WKY rats, was completely reversed by MOI treatment ( Figure 3c ). This result is in agreement with the measurements of the deceleration time of the E wave that also was increased in SHR CTRL compared to WKY rats and partially normalized in SHR MOI ( Figure 3d ). Moreover, ejection volume and cardiac output, significantly reduced in SHR CTRL, attesting a decreased cardiac compliance, were restored in SHR MOI to levels similar to those of WKY rats ( Figure 3e , f ). Altogether these data are consistent with a beneficial effect of MOI on diastolic function of SHR.

Figure 3.

Effects of MOI seeds on cardiac function in SHR. ( a ) Fractional shortening of left ventricle. ( b ) Ejection fraction. ( c ) IVRT: isovolumetric relaxation time. ( d ) DTE: deceleration time of the E wave. ( e ) Ejection volume. ( f ) Cardiac output. Results are expressed in mean ± SEM, n = 4–6, * P < 0.05, ** P< 0.01, *** P < 0.001, WKY, white bars vs. SHR CTRL or SHR MOI, black bars, #P < 0.05 and ##P < 0.01, SHR CTRL vs. SHR MOI. Abbreviations: CTRL, control; MOI, Moringa oleifera ; SHR, spontaneous hypertensive rat; WKY, Wistar Kyoto.

 Effects of MOI seeds on cardiac function in SHR. ( a ) Fractional shortening of left ventricle. ( b ) Ejection fraction. ( c ) IVRT: isovolumetric relaxation time. ( d ) DTE: deceleration time of the E wave. ( e ) Ejection volume. ( f ) Cardiac output. Results are expressed in mean ± SEM, n = 4–6, * P < 0.05, ** P < 0.01, *** P < 0.001, WKY, white bars vs. SHR CTRL or SHR MOI, black bars, #P < 0.05 and ##P < 0.01, SHR CTRL vs. SHR MOI. Abbreviations: CTRL, control; MOI, Moringa oleifera ; SHR, spontaneous hypertensive rat; WKY, Wistar Kyoto.

HR checked during echography measurements was found similar in the 3 groups of anesthetized rats indicating that all the observed differences did not indirectly result from changes in cardiac rhythm (in beats per minute: 371±10.12 in WKY, 339±17.42 in SHR CTRL, and 358±17.73 in SHR MOI).

MOI reduces cardiac remodeling and fibrosis

MOI treatment also reduced cardiomyocyte size in SHR MOI compared to SHR CTRL hearts (cardiomyocyte length: 158.88±3.22 µm in SHR CTRL vs. 138.64±4.71 µm in SHR MOI ( P < 0.05); cardiomyocyte wide: 36.44±0.85 µm in SHR CTRL vs. 29.95±2.19 µm in SHR MOI ( P < 0.05); n = 6 hearts in each group), confirming at cell level, the antihypertrophic effect of MOI treatment in SHR observed in the heart of treated SHR.

We also determined the area of myocardial fibrosis in the LV by the collagen circularly polarized light analysis of picrosirius red stained sections. The hearts of SHR CTRL showed a strong red staining in bright-field microscopy that appeared as red brightness in polarized light confirming collagen type I infiltration in cardiac tissue ( Figure 4a , b ). In contrast, in sections from SHR MOI hearts, red/orange staining in bright-field microscopy and red brightness in polarized light were very weak ( Figure 4a , b ). We did not find green brightness in polarized light indicating the absence of collagen III infiltration. Histograms obtained from measurements of red brightness showed a significant reduction of fibrosis in hearts from SHR MOI compared to SHR CTRL ( Figure 4c ).

Figure 4.

Effect of MOI on cardiac fibrosis and PPARα and PPARδ expression/activation. Histological analysis of Sirius red staining in cardiac tissue. ( a ) In red, bright-field microscopy images of cardiac fibrosis in SHR CTRL and SHR MOI. ( b ) The same images observed with a crossed polarized filter, bar = 1mm. The red/orange light corresponds to collagen I infiltration. ( c ) In arbitrary units (a.u.), the histograms of fibrosis in SHR CTRL and SHR MOI, values are expressed as mean ± SEM, n = 6 experiments, *** P < 0.001 SHR CTRL vs. SHR MOI. ( d,e ) Immunohistochemical staining (brown) of PPARα and PPARδ on left ventricular myocardium of SHR CTRL and SHR MOI. Eosin stained in pink the cytoplasm of cardiac cells and hematoxylin stained in violet the nuclei of the cells, n = 5–6 experiments for each group of samples. C(−) indicates negative control. Bar = 10 µm. ( f ) Diacylglycerol levels in cardiac left ventricle lysates from SHR CTRL and SHR MOI (values are expressed in ng/mg of cardiac proteins). ( g ) Triglyceride concentration in cardiac left ventricle lysates in SHR CTRL and SHR MOI (values are expressed in nmol/mg of cardiac proteins). ( h ) Plasmatic levels of prostacyclin in SHR CTRL and SHR MOI (values are expressed in pg/ml of plasma). For (f), (g), and (h), values are expressed as mean ± SEM, n = 5–6 for each group of samples, * P < 0.05, SHR CTRL vs. SHR MOI. Abbreviations: CTRL, control; MOI, Moringa oleifera ; PPAR, peroxisome proliferator-activated receptor; SHR, spontaneous hypertensive rat.

 Effect of MOI on cardiac fibrosis and PPARα and PPARδ expression/activation. Histological analysis of Sirius red staining in cardiac tissue. ( a ) In red, bright-field microscopy images of cardiac fibrosis in SHR CTRL and SHR MOI. ( b ) The same images observed with a crossed polarized filter, bar = 1mm. The red/orange light corresponds to collagen I infiltration. ( c ) In arbitrary units (a.u.), the histograms of fibrosis in SHR CTRL and SHR MOI, values are expressed as mean ± SEM, n = 6 experiments, *** P < 0.001 SHR CTRL vs. SHR MOI. ( d,e ) Immunohistochemical staining (brown) of PPARα and PPARδ on left ventricular myocardium of SHR CTRL and SHR MOI. Eosin stained in pink the cytoplasm of cardiac cells and hematoxylin stained in violet the nuclei of the cells, n = 5–6 experiments for each group of samples. C(−) indicates negative control. Bar = 10 µm. ( f ) Diacylglycerol levels in cardiac left ventricle lysates from SHR CTRL and SHR MOI (values are expressed in ng/mg of cardiac proteins). ( g ) Triglyceride concentration in cardiac left ventricle lysates in SHR CTRL and SHR MOI (values are expressed in nmol/mg of cardiac proteins). ( h ) Plasmatic levels of prostacyclin in SHR CTRL and SHR MOI (values are expressed in pg/ml of plasma). For (f), (g), and (h), values are expressed as mean ± SEM, n = 5–6 for each group of samples, * P < 0.05, SHR CTRL vs. SHR MOI. Abbreviations: CTRL, control; MOI, Moringa oleifera ; PPAR, peroxisome proliferator-activated receptor; SHR, spontaneous hypertensive rat.

MOI increases cardiac PPARα and PPARδ expression and modifies cardiac lipid content

PPAR signaling has been reported to have beneficial effects on cardiac fibrosis and hypertrophy. 13 To investigate the potential role of PPAR signaling pathways in the protective effect of MOI on cardiac fibrosis in SHR, we assessed the expression of PPARα and PPARδ in cardiac tissue. Staining of PPARα and PPARδ was increased in the cardiac LV from SHR MOI compared to those from SHR CTRL ( Figure 4d , e ). MOI treatment did not modify diacylglycerol concentration ( Figure 4f ) but significantly reduces triglyceride levels in LV from SHR ( Figure 4g ). Interestingly, a significant increase in circulating level of PGI 2 , known to activate directly or indirectly PPARs, 14 was found in SHR MOI ( Figure 4h ).


Here, we report experimental evidences of the beneficial effects of orally administrated MOI seeds on hypertension-induced cardiac hypertrophy and fibrosis. MOI is currently used in traditional medicine to treat several disorders and mainly cardiovascular diseases such as hypertension. Our results thus provide scientific basis for the use of this widely distributed plant in cardiovascular disorder treatment.

MOI specifically decreased the HR of SHR during the nocturnal active period without effect on diurnal HR and arterial blood pressure. This is particularly relevant since a decreased HR is described to be associated with vascular and heart protection, with a direct correlation between HR, coronary atherosclerosis, and cardiovascular morbidity. 15–17

MOI treatment, at the dose used in the present study, did not modify the circulating levels of urea and of transaminases (alanine amino-transferase and aspartate amino-transferase; not shown) in SHR, suggesting no effect of the treatment on renal and hepatic functions.

Chemical analysis of MOI seeds confirmed the presence of flavonoids and alkaloids evidenced in previous studies. 18 , 19 Indeed, we found alkaloids (2.4 g/100 g MOI seeds) that could participate in the MOI effect on HR by regulating cholinergic function. We also found the presence of the thiocarbamate glycoside, niazimicin, described for its negative chronotropic activities independent of β-adrenoceptor antagonistic effect. 20

Clinically, sustained hypertrophy induced by hypertension is the initial step of human heart failure and is correlated with increased cardiovascular mortality. This cardiac remodeling is also a risk factor of arrhythmia and sudden cardiac death. 3 , 21 The present study shows an antihypertrophic role of MOI administration. Indeed, MOI treatment restored to values similar to those recorded in WKY, some morphological parameters associated with LV cardiac hypertrophy induced by pressure overload, such as LVAWTd, IVSd, and RWT that are increased in SHR. 3 Moreover, MOI treatment partially decreased the LV mass and LV mass /BW in SHR and reduced the LV cardiomyocyte size confirming the protective effect of MOI in the overload-dependent LV remodeling. The 8-week treatment was possibly too short to completely rescue all the parameters linked to the cardiac hypertrophy. Furthermore, the cardiac remodeling was already too advanced in 17-week-old SHR when we started the treatment. Indeed, it was previously described that concentric LV hypertrophy was already apparent in 6-week-old SHR compared to WKY rats. 3

Regarding cardiac functions, LVIDd and LVVd, both reduced in SHR CTRL, were restored in SHR MOI to levels similar to WKY rats. The same parameters during cardiac systole, LVIDs and LVVs, were not different in the 3 groups of rats. Echographic measurements did not allow to detect a clear beneficial effect of MOI on cardiac systolic function. In contrast, concerning diastolic function, MOI improved ejection volume and cardiac output in SHR and this also was associated with the restoration to normal values of IVRT and deceleration time of the E wave in SHR MOI compared to the elevated values found in SHR CTRL. All these results suggested an amelioration of the diastolic function in vivo .

Left ventricular end-diastolic pressure (LVEDP) is a commonly used parameter in patients with heart failure. 22 Although it did not reach significance, LVEDP, calculated by a noninvasive method as previously described, 23 was reduced by MOI (in mm Hg: 19.2±1.75 in SHR CTRL vs. 14.9±1.03 in SHR MOI; n = 6). Echocardiographic diurnal measurements indicated that the HR was similar in the 3 groups of anesthetized rats suggesting that the differences obtained in cardiac parameters were independent of cardiac rhythm changes or LVEDP.

Cardiac hypertrophy and diastolic dysfunction in SHR are associated with increased fibrosis and collagen infiltration in the LV wall. 24 Activation of PPARs plays a protective role against cardiac hypertrophy and fibrosis because their pivotal role in myocardial fatty acid metabolism. 25–27 Here, we found that the cardiac fibrosis observed in SHR CTRL was significantly reduced in SHR MOI. This structural effect of MOI was associated with an increased expression of the nuclear receptors, PPARα and PPARδ, and an elevated plasmatic level of the PPAR activator prostacyclin. The significant reduction of triglyceride level in cardiac LV of SHR MOI suggests an increased fatty acid oxidation in SHR MOI hearts. This is in line with previous findings showing the association of increased expression/activity of PPARs, and in particular of PPARδ, with the upregulation of oxidative genes implicated in fatty acid oxidation that could be involved in the antihypertrophic protective role of PPARs during hypertension. 28 Our observations are thus consistent with a role of PPARs in the antihypertrophic and antifibrotic effects of MOI treatment. These data are in agreement with other studies that described a cardiac protective role of natural substances or PPAR agonists, improving cardiac function and preventing LV hypertrophy and fibrosis in animal models of pressure overload by PPARα and PPARδ upregulation. 29 , 30 In addition, plant polyphenols, which are also present in MOI seeds, have been described to reduce triglyceride accumulation by PPAR-dependent mechanisms. 31

We focused this study on MOI administration effect in the SHR model of hypertension because the plant is empirically used to treat this condition. We did not test MOI seeds in normotensive WKY as numerous previous studies demonstrated that diets containing natural cardiovascular active substances in disease models have no effect in nonpathological animals. 32–35 We used a WKY group of rats only for in vivo echographic analysis to better show the cardiac remodeling and cardiac functional impairment due to hypertension in SHR.

The clear beneficial effect of MOI in cardiac function described in this study suggests that MOI treatment affected signaling pathways involved in pressure overload-induced LV hypertrophy, in particular calcium handling mechanisms. For instance, the calmodulin-activated serine-threonine protein phosphatase calcineurin pathway could be a potential target of MOI since calcineurin activity has been shown to progressively increase with age in the heart of SHR and the inhibition of calcineurin reduces hypertrophy development. 36–39

Altogether these data identified a beneficial role of MOI seed against hypertension-induced functional and structural cardiac remodeling and support scientifically the empirical use of this plant in traditional Malagasy medicine to treat cardiac complications due to blood pressure overload. Further studies now deserved to be performed to completely elucidate the mechanisms involved in MOI positive cardiac effect.


The authors declared no conflict of interest.


This work was supported by Région Pays de Loire (PROVASC project). We thank Amandine Grabherr of the platform of echography (Therassay, Nantes University) for realizing echocardiographic measurements and analysis. We gratefully acknowledge Guillaume Lamirault and Gilles Toumaniantz for interesting scientific discussion.








Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure











Alterations in plasma catecholamines and behavior during acute stress in spontaneously hypertensive and Wistar-Kyoto normotensive rats


Life Sci






Validação Cientifica Eficácia Redução do Açúcar



Studies showed effects of Moringa oleifera (MO) on lowering blood sugar levels in animal and diabetes patients. The aims of this study were to determine the effect of MO leaf capsules on glucose control in therapy-naïve type 2 diabetes mellitus (T2DM) and to evaluate its safety.


This was a prospective randomized placebo controlled study. Therapy-naïve T2DM was randomly assigned to receive either 8 grams per day of MO leaf capsules (MO leaf group) or placebo for 4 weeks. Clinical and laboratory characteristics were recorded at screening and at the end of 4-week study. 9-point plasma glucose was obtained before and every week during the study.


Thirty-two T2DM patients were enrolled. The mean age was 55 years and the mean HbA1C was 7.0%. There was no significant difference in FPG and HbA1C between groups. MO leaf group had SBP reduction by 5 mmHg as compared to baseline but this difference had no statistical significance. There were no adverse effects of MO leaf.


Moringa oleifera leaf had no effect on glycemic control and no adverse effects in T2DM. Interestingly, this study demonstrated that MO leaf had a tendency on blood pressure reduction in T2DM, and this result needs further investigation.

1. Introduction

Type 2 diabetes mellitus (T2DM) is a major public health problem. Insulin resistance and impairment of pancreatic insulin secretion are the main pathogenesis of T2DM. Treatment of T2DM and its complications is usually complicated and costly. Herbal medicines have long been used as an alternative treatment for type 2 diabetes. Moringa oleifera (MO) drumstick tree is a traditional herb widely used for a long time. In Thailand, we use MO seed as an important ingredient in Thai-traditional food. In Western Asia, most parts of the plant are well known for their pharmacological actions and have been used as antihypertensive drugs, thyroid hormone regulator, laxatives, and antibiotics []. Several studies [] in nondiabetic and diabetic rat model have shown that MO leaf could decrease plasma and urine glucose and improve glucose tolerance test. These hypoglycemic effects were postulated to be associated with decrease intestinal glucose uptake and slowing gastric emptying time by fiber in MO leaf. Our previous study [] conducted in 10 healthy volunteer demonstrated that a single dose of 4 grams of MO leaf powder capsules significantly increased insulin secretion in healthy subjects without any adverse effects on liver and kidney function. Despite several evidence of benefit of Moringa oleifera on plasma glucose in anima model and healthy subjects, the data in type 2 diabetes are still lacking. There are a few studies [] which evaluated an efficacy and safety of Moringa oleifera in type 2 diabetes patients; however those studies are not randomized; therefore, this study was conducted to determine whether the use of the MO leaf capsules would improve glucose control in patients with therapy-naïve type 2 diabetes mellitus (T2DM) in a randomized placebo controlled study and to evaluate its safety.

2. Materials and Methods

This study was a prospective randomized placebo controlled study conducted from July 2012 to February 2013 at Siriraj Hospital, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand. Siriraj Institutional Review Board approved the study and all subjects gave written consent.

2.1. Participants

Participants were eligible to enroll in the study if they were therapy-naïve type 2 diabetes with the duration of diabetes of less than 5 years, age between 20 and 70 years, hemoglobin A1C (HbA1C) of less than 9%, and fasting plasma glucose of less than 200 mg/dl. Exclusion criteria were type 1 or others types of diabetes, use of glycemic lowering agents within 2 months before the enrollment, a creatinine clearance of less than 60 ml/min./1.73 m2, an elevation of alanine aminotransferase or aspartate aminotransferase level of more than 2 times of the upper limit of the normal range, and history of heart disease or other serious illness and pregnancy.

2.2. Calculation of Sample Size

The sample size was calculated by

npergroup=2{(Zα/2 Zβ)SD}2d2.

Definition is as follows:

  •   α = type I error (2-sided test) = 0.05; Z0.025 = 1.96.
  •   1 − β = Power = 0.80; Z0.2 = 0.84.
  •   SD = SD of HbA1c = 0.95 (reference value of our institute).
  •   d = the clinical significance of HbA1c between each group was 1 n and therefore per group was 16 persons.

The follow-up period of this study was 1 month with the expected dropout being 10%; therefore, the number of participants in each group should be 18 persons.

2.3. Study Procedure

The study consisted of a screening period (1-2 weeks) and a randomized treatment period (4 weeks). At the screening period, all participants came to the diabetes unit for history taking, physical examination including body weight and blood pressure and laboratory testing including FPG, HbA1C, creatinine, and liver function test. They also received behavioral counseling regarding diabetes care and learned how to do the 9-point plasma glucose (PG) monitoring, using ACCU-CHECK Advantage meter system (Roche Thailand). The 9-point plasma glucose (PG) profile was obtained in each participant during the study period as shown in Figure 1. The 9-point PG profile included PG measurement in the morning of day 1, PG measurement before each meal (premeal PG), 2 hours after each meal (postmeal PG) and at bedtime of day 2, and PG measurement before breakfast of day 3. If the participants did not meet the exclusion criteria, they were randomized, using table of random numbers assigned in a 1 : 1 ratio, to receive either Moringa oleifera leaf capsule or matched placebo. During 4-week treatment period, all participants randomly received either 8 capsules (4 grams) of MO leaf capsule or matched placebo, before breakfast and dinner. The dosage of MO leaf used in this study was based on our previous study that demonstrated the effect of MO leaf capsule on insulin secretion in healthy subjects []. At the end of 4-week study, all the participants were asked to come back to diabetes unit for history taking, physical examination, and blood drawing for measurement of FPG, HbA1C, creatinine, and liver function test.

An external file that holds a picture, illustration, etc.
Object name is ECAM2017-6581390.001.jpg

Study procedures.

2.4. Definitions

Plasma glucose data obtained from 9 point PG profile were used to calculate mean daily PG, mean premeal PG, and mean postmeal PG.

  1. Mean daily PG was defined as the average of 9 point PG in each visit.
  2. Mean premeal PG was calculated using PG of day 1, premeal PG from each meal of day 2, and PG of day 3.
  3. Mean postmeal PG was using postmeal PG from each meal of day 2.

Hypoglycemia was diagnosed by either PG measurement of less than 70 mg/dl or patient experienced episodes of low blood sugar with or without PG confirmed.

2.5. Study Drugs

2.5.1. Moringa oleifera Leaf Capsules

A single batch of Moringa oleifera leaf powder capsules was manufactured at the Herbal Medicine and Products Manufacturing unit, Center of Applied Thai Traditional Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University (Bangkok, Thailand), according to good manufacturing practice guidelines. The dried leaves of Moringa oleifera were separated from foreign matters, cleaned, and oven-dried. Then they were ground and sifted to be powder. The powder was filled into capsule shells, and each capsule contains 500 mg of dried leaf powder of Moringa oleifera.

2.5.2. Placebo Capsules

Placebo capsules were also manufactured at the Herbal Medicine and Products Manufacturing. Each placebo capsules had size and color identical to Moringa oleifera leaf capsules and consisted of plain powder, magnesium stearate, and talcum.

3. Statistical Analyses

The SPSS version 18.0 was used for all analyses. All continuous variables were expressed as mean ± SD or median (min, max) as appropriated. The categorical variables were shown as frequency and percentage. The independent t-test was used for the continuous variables and Chi-square and Fisher test were used for the categorical variables. The differences of glucose parameter between the two treatment arms and the change between baseline and endpoint were determined using the repeated measured ANOVA. Due to small sample size, P for trend was used to analyze the linear trend of one-way ANOVA. For all analyses, P< 0.05 was considered to be statistically significant.

4. Results

4.1. Subject Characteristic

A total of 32 therapy-naïve type 2 diabetes patients were enrolled in the study. All participants completed the study with the compliance of the study drugs greater than 80%. The 9 point PG profiles were completed with the missing data only 2%. Table 1 summarized the subject's clinical and laboratory characteristics. There were no differences in age, sex, the duration of T2DM, BW, BMI, FPG, and HbA1C between two groups.

Table 1

Baseline clinical and laboratory characteristics of MO leaf and placebo group.

MO leaf
(n = 16)
(n = 16)
P value
Male sex 7 (44%) 10 (56%) 0.48
Age (years) 52 ± 11 57 ± 7 0.07
Body weight (kg) 73 ± 12 70 ± 12 0.91
BMI (kg/m2) 28.1 ± 4.6 27.1 ± 3.2 0.14
Duration of DM (months) 18 (1–48) 18 (2–60) 0.72
Family history of DM 14 (88%) 12 (75%) 0.65
Hypertension 7 (44%) 10 (63%) 0.29
Antihypertensive agents (%) 7 (22%) 9 (28%) 1.00
Dyslipidemia 9 (56%) 13 (81%) 0.13
Lipid lowering agents (%) 5 (16%) 11 (34%) 0.28
FPG (mg/dl) 138 ± 35 132 ± 28 0.14
HbA1C (%) 7.1 ± 0.9 6.9 ± 0.7 0.39

MO leaf, Moringa oleifera leaf; BMI, body mass index; DM, diabetes mellitus; FPG, fasting plasma glucose; HbA1C, hemoglobin A1C.

4.2. Effect of MO Leaf Capsule in Therapy-Naïve T2DM

At the end of study, there was a nonsignificant decrease in body weight by 1 kg in both groups. Interestingly, despite no change in antihypertensive agents, MO leaf group had a reduction of SBP and DBP by 5 mmHg as compared to baseline, whereas placebo group had an increase in blood pressure by 2 mmHg as compared to baseline; however these differences had no statistical significance (Table 2).

Table 2

Clinical and glucose parameter in MO leaf and placebo group.

MO leaf Placebo P valueA P valueB
Body weight (kg)
 (i) Baseline 73 ± 12 70 ± 12 0.49
 (ii) 2nd week 73 ± 12 70 ± 12 0.51
 (iii) End of study 72 ± 12 69 ± 12 0.52 0.12
SBP (mmHg)
 (i) Baseline 133 ± 16 128 ± 14 0.36
 (ii) 2nd week 133 ± 13 126 ± 15 0.14
 (iii) End of study 128 ± 13 130 ± 17 0.68 0.25
DBP (mmHg)
 (i) Baseline 85 ± 11 76 ± 9 0.03
 (ii) 2nd week 82 ± 8 76 ± 9 0.11
 (iii) End of study 79 ± 8 79 ± 12 0.94 0.17
FPG (mg/dl)
 (i) Baseline 138 ± 36 132 ± 28 0.14
 (ii) 2nd week 130 ± 30 129 ± 25 0.33
 (iii) End of study 136 ± 34 126 ± 29 0.44 1.00
HbA1C (%)
 (i) Baseline 7.14 ± 0.97 7.15 ± 1.01 0.49
 (ii) End of study 6.93 ± 0.73 6.87 ± 0.72 0.37 0.82

MO leaf, Moringa oleifera leaf; SBP, systolic blood pressure; DBP, diastolic blood pressure; FPG, fasting plasma glucose; HbA1C, hemoglobin A1C; PG, plasma glucose; AP value compare between MO leaf and placebo; BP value compare between baseline and end of study.

There was no significant difference of FPG and HbA1C between MO leaf and placebo group. Four weeks of treatment caused 0.2–0.3% reduction of HbA1C as compared to baseline in both treatment arms (Table 2) but these changes did not reach statistical significance. The mean daily PG, mean premeal, and mean postmeal PG in MO leaf group were not different from those in placebo group (Figure 2).

An external file that holds a picture, illustration, etc.
Object name is ECAM2017-6581390.002.jpg

Mean premeal, postmeal, and daily plasma glucose in MO leaf and placebo group. The solid line and dash line represented MO leaf and placebo group, respectively.

4.3. Safety of MO Leaf Capsule in Therapy-Naïve T2DM

There was no incidence of hypoglycemia in both treatment groups. Four of 16 patients (25%) in MO group reported transient diarrhea, which is spontaneously resolved within a few days. There were no differences in BUN, Cr, AST, and ALT between baseline and the end of study in both groups. These data demonstrated that there were no adverse effects after high dose of MO leaf powder.

5. Discussion

This study is the first randomized placebo controlled clinical study that compared the effect of Moringa oleifera leaf capsules and placebo in therapy-naïve type 2 diabetes patients. In this study, we found tend toward a decrement in hemoglobin A1C in both MO leaf and placebo group, but these changes did not reach statistical significance. There was no difference in fasting, premeal, and postmeal plasma glucose between two treatment arms. There was no adverse effect of the use of MO leaf. Interestingly, we found a decrease in systolic and diastolic blood pressure in MO leaf group; however the change did not reach statistical significance.

Previous studies using Moringa oleifera leaf demonstrated the glucose lowering effect of MO leaf in animal and human studies []; however this study did not demonstrated the similar effect. Our previous study [] in healthy volunteer has shown that a single dose of 4 grams of MO leaf powder capsules significantly increased insulin secretion by 74%; therefore the lack of effect on plasma glucose in this study should not be explained by an inappropriate dosage.

The discrepancy between this study and others might be explained by several reasons. First of all, it is because a short period of this study; therefore it was too early to demonstrate the change in HbA1C that need at least 8–12 weeks. However, we did not observe any change in fasting, premeal, or postmeal plasma glucose, which could change earlier, as had been demonstrated in previous 2-week study []. Second, the hypoglycemic effects of MO leaf have been postulated to be associated with decreased intestinal glucose uptake and slowing gastric emptying time by fiber in MO leaf, which contained fiber 12% (w/w) [] and had an effect on postprandial plasma glucose by three important bioactive phytochemicals including quercetin, chlorogenic acid, and moringinine []. Quercetin, a potent antioxidant, showed antidiabetic effects in Zucker rat, the insulin resistance model []. Chlorogenic acid has been shown to inhibit glucose-6-phosphate translocase in rat liver which resulted in a reduction of hepatic gluconeogenesis and glycogenolysis []. In human study, chlorogenic acid showed a decrease in glycemic response during oral glucose tolerance test []. Moringinine demonstrated an improvement of glucose tolerance in rat model []. We used the raw material in this study which might contained only a small amount of these bioactive phytochemicals that could explain why we could not demonstrated the effect on postmeal glucose. Lastly, the improvement of plasma glucose in placebo group might be an effect of self-monitoring of blood glucose (SMBG), so we could not demonstrate the difference between two treatment arms. Data from Cochrane review in 2012 [] showed that a short-term follow-up, up to six months in newly diagnosed type 2 diabetes who had SMBG, had a statistically significant decrease of HbA1C by 0.3% (95% CI −0.4 to −0.1) as compared with the control group. On the other hand, in a long-term study, over a 12-month follow-up period, this effect was diminished, which resulted in a decrement of HbA1C by 0.1% in SMBG groups as compared to control. The effect of SMBG on glycemic control could be explained by its feedback on patient behavior to empower the patient to gain control over their disease and to motivate the lifestyle changes []. Therefore, longer study period should be done to eliminate an effect of SMBG on glycemic control, and thus we could distinguish the effect of MO leaf as compared to placebo.

The second aim of this study was to evaluate the safety of Moringa oleifera leaf. It has been shown in animal studies that the high dose of MO leaf resulted in transaminitis, followed by weight gain []. However, we found no adverse effects on liver and kidney function in our subjects. Twenty-five percent of patients who took MO leaf powder reported short duration of diarrhea with resolved spontaneously. Previous human studies of MO leaf also reported no adverse event similar to this study [].

We also found a trend toward blood pressure reduction after MO leaf ingestion. Recent meta-analysis found that every 5 mmHg reduction of systolic blood pressure resulted in significant reduction of cardiovascular disease and all-cause mortality []; therefore this blood pressure lowering effect would have clinical benefits in diabetes patients. The antihypertensive effect of MO leaves had been shown in previous review []. Recent animal studies [] have shown that MO leaf exerts antihypertensive effects by inhibiting the secretion of IL-2 and modulates T-cell calcium signaling in hypertensive rats. Therefore, further study of blood pressure lowering effect of Moringa oleifera is needed.

The limitation of this study was a short duration of the study so the larger and longer duration of study are needed before we can draw a conclusion about the effect of MO leaf on plasma glucose.

In conclusion, Moringa oleifera leaf had no effect on glycemic control in T2DM in this short-term study; however, we could demonstrate that the use of MO did not have any adverse effects. Interestingly, this study demonstrated that MO leaf had a tendency on blood pressure reduction in T2DM patients; this result needs further investigation.

Conflicts of Interest

The authors declare that they have no conflicts of interest.


1. Fahey J. W. Moringa oleifera: a review of the medical evidence for its nutritional, therapeutic, and prophylactic properties. part 1. Trees for Life Journal2005;1(5)
2. Anwar F., Latif S., Ashraf M., Gilani A. H. Moringa oleifera: a food plant with multiple medicinal uses. Phytotherapy Research2007;21(1):17–25. doi: 10.1002/ptr.2023. [PubMed] [Cross Ref]
3. Thurber M. D., Fahey J. W. Adoption of Moringa oleifera to combat under-nutrition viewed through the lens of the "Diffusion of innovations" theory. Ecology of Food and Nutrition2009;48(3):212–225. doi: 10.1080/03670240902794598. [PMC free article] [PubMed] [Cross Ref]
4. Makonnen E., Hunde A., Damecha G. Hypoglycaemic effect of Moringa stenopetala aqueous extract in rabbits. Phytotherapy Research1997;11(2):147–148. doi: 10.1002/(SICI)1099-1573(199703)11:2<147::AID-PTR41>3.0.CO;2-V. doi: 10.1002/(SICI)1099-1573(199703)11:2<147::AID-PTR41>3.0.CO;2-V. [Cross Ref]
5. Kar A., Choudhary B. K., Bandyopadhyay N. G. Comparative evaluation of hypoglycaemic activity of some Indian medicinal plants in alloxan diabetic rats. Journal of Ethnopharmacology2003;84(1):105–108. doi: 10.1016/S0378-8741(02)00144-7. [PubMed] [Cross Ref]
6. Ndong M., Uehara M., Katsumata S.-I., Suzuki K. Effects of oral administration of Moringa oleiferaLam on glucose tolerance in Goto-Kakizaki and wistar rats. Journal of Clinical Biochemistry and Nutrition2007;40(3):229–233. doi: 10.3164/jcbn.40.229. [PMC free article] [PubMed] [Cross Ref]
7. Anthanont P., Lumlerdkij N., Akarasereenont P., Vannasaeng S., Sriwijitkamol A. Moringa oleifera leaf increases insulin secretion after single dose administration: A preliminary study in healthy subjects. Journal of the Medical Association of Thailand2016;99(3):308–313. [PubMed]
8. William F., Lakshminarayanan S., Chegu H. Effect of some indian vegetables on the glucose and insulin response in diabetic subjects. International Journal of Food Sciences and Nutrition1993;44(3):191–195. doi: 10.3109/09637489309017439. [Cross Ref]
9. John S., Chellappa A. R. Hypoglycemic effect Oleifera powder diabetic subjects rats. Indian Journal of Nutrition and Dietetics2005;42(1)
10. Joshi P., Mehta D. Effect of dehydration on nutritive value of drumstick leaves. Journal of Metabolomics and Systems Biology2010;1(1):p. 5.
11. Bennett R. N., Mellon F. A., Foidl N., et al. Profiling glucosinolates and phenolics in vegetative and reproductive tissues of the multi-purpose trees Moringa oleifera L. (Horseradish tree) and Moringa stenopetala L. Journal of Agricultural and Food Chemistry2003;51(12):3546–3553. doi: 10.1021/jf0211480. [PubMed] [Cross Ref]
12. Manguro L. O. A., Lemmen P. Phenolics of Moringa oleifera leaves. Natural Product Research (Formerly Natural Product Letters) 2007;21(1):56–68. doi: 10.1080/14786410601035811. [PubMed][Cross Ref]
13. Rivera L., Morón R., Sánchez M., Zarzuelo A., Galisteo M. Quercetin ameliorates metabolic syndrome and improves the inflammatory status in obese Zucker rats. Obesity2008;16(9):2081–2087. doi: 10.1038/oby.2008.315. [PubMed] [Cross Ref]
14. Karthikesan K., Pari L., Menon V. P. Antihyperlipidemic effect of chlorogenic acid and tetrahydrocurcumin in rats subjected to diabetogenic agents. Chemico-Biological Interactions2010;188(3):643–650. doi: 10.1016/j.cbi.2010.07.026. [PubMed] [Cross Ref]
15. Karthikesan K., Pari L., Menon V. P. Combined treatment of tetrahydrocurcumin and chlorogenic acid exerts potential antihyperglycemic effect on streptozotocin-nicotinamide-induced diabetic rats. General Physiology and Biophysics2010;29(1):23–30. doi: 10.4149/gpb_2010_01_23. [PubMed] [Cross Ref]
16. Tunnicliffe J. M., Eller L. K., Reimer R. A., Hittel D. S., Shearer J. Chlorogenic acid differentially affects postprandial glucose and glucose-dependent insulinotropic polypeptide response in rats. Applied Physiology, Nutrition, and Metabolism2011;36(5):650–659. doi: 10.1139/h11-072. [PubMed] [Cross Ref]
17. Bour S., Visentin V., Prévot D., et al. Effects of oral administration of benzylamine on glucose tolerance and lipid metabolism in rats. Journal of Physiology and Biochemistry2005;61(2):371–380. doi: 10.1007/BF03167054. [PubMed] [Cross Ref]
18. Malanda U. L., Welschen L. M. C., Riphagen I. I., Dekker J. M., Nijpels G., Bot S. D. M. Self-monitoring of blood glucose in patients with type 2 diabetes mellitus who are not using insulin. Cochrane Database of Systematic Reviews (Online) 2012;1:p. CD005060. [PubMed]
19. Farmer A., Wade A., Goyder E., et al. Impact of self monitoring of blood glucose in the management of patients with non-insulin treated diabetes: Open parallel group randomised trial. British Medical Journal2007;335(7611):132–136. doi: 10.1136/bmj.39247.447431.BE. [PMC free article] [PubMed] [Cross Ref]
20. Farmer A. J., Wade A. N., French D. P., et al. Blood glucose self-monitoring in type 2 diabetes: A randomised controlled trial. Health Technology Assessment2009;13(15):1–50. doi: 10.3310/hta13150.[PubMed] [Cross Ref]
21. Adedapo A. A., Mogbojuri O. M., Emikpe B. O. Safety evaluations of the aqueous extract of the leaves of Moringa oleifera in rats. Journal of Medicinal Plants Research2009;3(8):586–591.
22. Kumari D. J. Hypoglycaemic effect of Moringa oleifera and Azadirachta indica in type 2 diabetes mellitus. Bioscan2010;5:211–214.
23. Giridhari V. V. A., Malathi D., Geetha K. Anti diabetic property of drumstick (Moringa oleifera) leaf Tablets. International Journal of Health and Nutrition2011;2(1):1–5.
24. Bundy J. D., Li C., Stuchlik P., et al. Systolic Blood Pressure Reduction and Risk of Cardiovascular Disease and Mortality. JAMA Cardiology2017;2(7):p. 775. doi: 10.1001/jamacardio.2017.1421.[PMC free article] [PubMed] [Cross Ref]
25. Attakpa E. S., Chabi N. W., Bertin G. A., Ategbo J. M., Seri B., Khan N. A. Moringa oleifera-rich diet and T-cell calcium signaling in hypertensive rats. Physiological ResearchIn press. [PubMed]

Articles from Evidence-based Complementary and Alternative Medicine : eCAM are provided here courtesy of Hindawi Limited

Validação Cientifica Eficácia Saúde Óssea
Introdução Um osso lveolar tem um papel importante no suporte aos dentes e próteses. A perda de suporte causada pela reabsorção alveolar causará problemas funcionais e estéticos. Soquete de preservação usando enxerto ósseo é uma maneira de manter as dimensões do osso alveolar. A folha da moringa oleifera pode aumentar a atividade do enxerto ósseo na formação de novo osso. Objetivo: Este estudo teve como objetivo avaliar o efeito do extrato de folhas combinadas de Moringa oleivera e xenoenxerto bovino desmineralizado liofilizado (DFDBBX) na formação de osteoblastos e osteoclastos nas cavidades de extração dentária de cavia cobaya. Método: Este estudousou 28 cobayas de cavia divididas em quatro grupos. A combinação do extrato da folha da Moringa oleifera e DFDBBX foi introduzida nas cavidades do dente incisivo inferior com determinada dose em cada grupo, pomada 1 contendo PEG (uma mistura de PEG 400 e PEG 4000) para o grupo controle, pomada 2 contendo extrato da folha da Moringa oleifera e DFDBBX e PEG (na concentração ativa de 0,5%) para o grupo 1, pomada 3 contendo extrato de folha de Moringa oleifera e DFDBBX e PEG (na concentração ativa de 1%) para o grupo 2, e Pomada 4 contendo extrato de folha de Moringa oleifera e DFDBBX e PEG (com uma substância activa de 2%) para o grupo 3. As preparações de blocos de parafina foram feitas para exame histopatológico usando coloração com hematoxilina eosina. Resultado:Os resultados mostraram que houve diferenças significativas no número de osteoblastos e osteoclastos em cada grupo de tratamento (p < 0,05). Conclusão: Pode-se concluir que a combinação do extrato de folhas de Moringa oleifera e DFDBBX a 2% de cocentração pode aumentar o número de osteoblastos e diminuir osteoclastos na cicatrização de cavidades de extração dentária de cavia cobaya.


xenoenxerto de osso bovino liofilizado desmineralizado; Folha de moringa oleifera; osteoblasto; osteoclastos

Texto completo:



Allegrini S Jr., Koening B Jr., Allegrini MR, Yoshimoto M., Gedrange T, Fanghaenel J, Lipski M. Preservação das cavidades alveolares com enxerto ósseo - Revisão. Ann Acad Med Stetin 2008; 54 (1): 70-81.

Irinakis T. Justificativa para a preservação da cavidade após a extração de um dente unirradicular ao planejar a futura colocação do implante. J Can Dent Assoc 2007; 72 (10): 917-22.

Nevins M, Camelo M, De Paoli S, Friedland B, Schenk RK, ParmaBenfenati S, Simion M, Tinti C, Wagenberg B. Um estudo da parede bucal de soquete de extração de dentes com raízes proeminentes. Int J Periodontics Dent Dentária Restauradora 2006; 26 (1): 19-20.

Oghli AA, Steveling. Preservação da crista após a extração dentária: comparação entre uma extração traumática e a cirurgia de vedação de cavidades. Quint Int 2010; 4 (7): 605-9.

Gark K, Lynch SE, Robert G. Robert EM. Aplicações de engenharia de tecidos em cirurgia maxilofacial e periodontia. Illinois: Quintessence Public Inc; 1999. p. 83-9.

Weiss CM, Weis A. Princípio e prática de implantodontia. 1ª ed. Estados Unidos da América: Mosby Inc; 2001. p. 659

Baharuddin NA, Kamin S, Samsuddin AR. O uso de xenoenxerto de osso bovino desmineralizado liofilizado na redução da profundidade da bolsa periodontal pós-cirúrgica. Anais de Odontologia. Universidade da Malásia 2003; 10: 33-6.

Nevins M, Camelo M, Angelis N, Hanratty JJ, Khang WG, Kwon JJ, Rasperini G. Rocchietta I, Schupbach P, Kim DM. Eficácia clínica e histológica de grânulos de xenoenxerto para aumento do assoalho do seio maxilar. Int J Periodontics Dent Restauradora 2011; 31 (3): 227-35.

Copin JA. Estudo dos valores nutricionais e medicinais das folhas da Moringa oleifera da África Subsaariana: Gana, Ruanda, Senegal e Zâmbia. A Universidade Estadual de Nova Jersey: Graduate School-New Brunswick Rutgers; 2008. p. 5-99.

Kasolo JN, Bimenya GS, J Ojok L, Ochieng J, Ognel JW. Fitoquímicos e usos de folhas de Moringa oleifera em comunidades rurais ugandenses. Revista de Plantas Medicinais Research 2010; 4 (9): 753-7.

Patel C, Rangrez A, Parikh P. O efeito anti-osteoporótico da Moringa oleifera em células osteoblásticas: SaOS2. Revista de Farmácia e Ciências Biológicas 2013; 5 (2): 10-7.

Coppin JW, Xu Y, Chen H, MH Pan, Ho CT, Juliano R, Simon JE, Wu. Determinação de flavonóides pela atividade antiinflamatória de LC / MS em Moringa oleifera. Jornal de Alimentos Funcionais 2013; 5: 1892-9.

Araújo LC, Aguiar JS, Napoleão TH, Mota FV, Barros AL, MC Moura, MC Coriolano, Coelho LC, Silva TG, Paiva PM. Avaliação das atividades citotóxica e antiinflamatória de extratos e lectinas de sementes de Moringa oleifera. PLoS One 2013; 8 (12): e81973.

Weijen FV, Actqua D, Slot DE. Alterações dimensionais do osso alveolar de cavidades pós-extração em humanos: uma revisão sistemática. J Clin Periodontol 2009; 36 (12): 1048-58.

Yustina AR, Suardita K. Agustin D. Peningkatan jumlah osteoklas pada keradangan periapikal akibat induksi lipopolisakarida porphyromonas gingivalis (laboratórios de Suatu penelitian menggunakan tikus). Revista Biosains 2012; 14 (3): 140-4.

Ghom A, Mhaske S. Livro de estudos de oral phatology.1st ed. Nova Deli, Índia: Jaypee Brothers Medical Publisher Ltd; 2009. p. 86-7.

Rajendran S. Caderno de Patologia Oral. 6a ed. Índia: Elseiver; 2010. p. 599-60.

Kresnoadi U, Rahayu RP. Influência da expressão do Aloe vera BNP 2 e da quantidade de osteoblastos do osso alveolar induzidos no alvéolo de extração dentária (Cavia Cobaya). Revista de Pesquisas Biológicas 2014; 19 (2): 2-10.

Vindani D. Efektivitas kombinasi ekstrak Jinten Hitam (Nigella Sativa) e Enxaqueca terhadap peningkatan osteoblas tulang alvéolo pada Cavia Cobaya. Tese. Surabaia: Pendidikan Dokter Gigi Spesialis Universidades Airlangga; 2013. p. 24-35

Jiang Yang Guo, Chiyan Choi, Yuzhong Zheng, Ping Chen, Tingxia Dong, Zheng-Tao Wang, Günter Vollmer, Taiwai Lau, Wah-keung Tsim. Kaempferol como flavonóide induz a diferenciação osteoblástica via sinalização do receptor de estrogênio. Medicina Chinesa 2012; 7 (10): 1-7.

Yamaguchi M. O efeito osteogênico do flavonóide bioativo ácido p-hidroxicinâmico: desenvolvimento no tratamento da osteoporose. OA Biotechnology 2013; 01: 2 (2): 15.

Jiaying G. Estudos mecanísticos sobre os efeitos osteogênicos dos flavonóides da dieta em osteoblastos cultivados: potencial desenvolvimento de drogas contra a osteoporose. Tese. Hong Kong: Universidade de Ciência e Tecnologia de Hong Kong; 2011. p. 146-50.

Thomas SDC. Marcadores de retorno de osso. Aust Prescr 2012; 35: 156-8.

Yudaniayanti IS. Aktifitas phosphatase alcalina pada proses kesembuhan patah tulang femur dengan terapi CaCO3 dosagem tinggi pada tikus jantan. Mídia Kedokteran Hewan 2008; 21 (1): 15-8.

Gupta R, Pandit N, Malik R, Sood S. Avaliação clínica e radiológica de um xenoenxerto ósseo para o tratamento de defeitos de infra-ferrugem. J Can Dent Assoc 2007; 73 (6): 513.

Baharuddin NA, Kamin S, Samsuddin AR. O uso do artigo original de xenoenxerto de osso bovino desmineralizado liofilizado na redução da recessão periodontal pós-cirúrgica. Anais de Odontologia. Universidade da Malásia em 2005; 12: 37-40.

Purnomo A, Adji D. Ekspresi proteína morfogenética óssea-2 para mengukur efektivitas biomaterial xenoenxerto de osso bovino liofilizado (FDBBX) sebagai bahan penyambung tulang. Jurnal Sain Veteriner 2012; 30 (1): 1-6.

Khan SN, Cammisa FP Jr., Sandhu HS, Diwan AD, Girardi FP, Lane JM. A biologia do enxerto ósseo. J Am Acad Orthop Surg 2005; 13 (1): 77-86.

Takanyangi. Ostoimunologia: Mecanismo de compartilhamento e crosstalk entre os sistemas imunológico e ósseo. 7a ed. Tóquio: Nature Publishing Group; 2007. p. 292-302.

Sreelatha S, Jeyachitra A, Padma PR. Antiproliferação e indução de apoptose pelo extrato da folha da Moringa oleifera em células cancerígenas humanas. Food Chem Toxicol 2011; 49 (6): 1270-5.

Pesquisa Thorne. 2000. Revisão alternativa de medicina. Vol.3 (2). Disponível em: Acessado em 10 de maio de 2015.

Della L. Atividade antiinflamatória de benzopironas que são inibidores de ciclo e lipo-oxigenase. Comunicações Farmacológicas de Ressearch 2001; 20: 91-4.

Amijaya APP, Murwani S, Wardhana AW. 2012. Efek ekstrak ar dael kelor (Moringa oleifera) terhadap kadar fator de necrose tumoral alfa (TNFα) dan gambaran histopatologi sel endotel arteri coronaria pada tikus putih (Rattus Norvegicus) yang diberi dieta Aterogenik. Programa Studi Pendidikan Dokter Hewan. Programa Kedokteran Hewan. Universitas Brawijaya. 1-12. Disponível em: Purnamasari P.pdf. Acessado em 9 de maio de 2015.

Wihastuti TA, Sargowo D, MS de Rohman. Efek ekstrak daun kelor (Moringaoleifera) dalam menghambat aktifasi NfkB, eksprim TNFα e ICAM-1 pada HUVECS yang dipapar LDL teroksidasi. Jurnal Kardiologi Indonesia 2007; 28: 181-8.

Wattel A, Kamel S, Mentaverri R, Lorget F, Prouillet C, Petit JP, Fardelone P, Braseiro M. Potente efeito inibitório de flavonóides de ocorrência natural quercetina e kaempferol na reabsorção óssea osteoclástica in vitro. Biochem Pharmacol 2003; 65: 35-42.

Woo JT, Nakagawa H, Notoya M, T Yonezawa, Udagawa N, Lee IS, M Ohnishi, Hagiwara, Nagai K. A quercetina suprime a reabsorção óssea inibindo a diferenciação andivation de osteoclastos. Biol Pharm Bull 2004; 27 (4): 504-9.

De Risi V, Clementini M, Vittorini G, Mannocci A, De Sanctis M. Técnicas de preservação do rebordo alveolar, Revisão sistemática e meta-análise de dados histológicos e histomorfométricos. Implantes Bucais Clin Res 2015; 26 (1): 50-68.


Logeart-Avramoglou D, F Anagnostou, Bizios R, Petite H. Calcanhares eobstáculos ósseos de engenharia. J Cell Mol Med 2005; 9 (1): 72-84.


Validação Cientifica Problemas Respiratórios

Atividade antiasmática da Moringa oleifera Lam: um estudo clínico


O presente estudo foi realizado para investigar a eficácia e segurança dos grãos de sementes de Moringa oleifera no tratamento da asma brônquica. Vinte pacientes de ambos os sexos com asma leve a moderada receberam grãos de sementes secos finamente pulverizados na dose de 3 g por 3 semanas. A eficácia clínica em relação aos sintomas e funções respiratórias foi avaliada usando um espirômetro antes e no final do tratamento. Os parâmetros hematológicos não foram alterados de forma acentuada pelo tratamento com M. oleifera. No entanto, a maioria dos pacientes apresentou um aumento significativo nos valores de hemoglobina (Hb) e a taxa de sedimentação de eritrócitos (VHS) foi significativamente reduzida. Melhoria significativa também foi observada no escore de sintomas e gravidade dos ataques asmáticos. O tratamento com a droga por 3 semanas produziu melhora significativa na capacidade vital forçada, volume expiratório forçado no primeiro segundo e pico de fluxo expiratório em 32,97 ± 6,03%, 30,05 ± 8,12% e 32,09 ± 11,75%, respectivamente, em asmáticos. . Melhoria também foi observada em% dos valores previstos. Nenhum dos pacientes apresentou efeitos adversos com M. oleifera . Os resultados do presente estudo sugerem a utilidade do caroço de sementes de M. oleifera em pacientes com asma brônquica.

Palavras-chave: Asma brônquica, Moringa oleifera , testes de função pulmonar

A asma brônquica é uma síndrome caracterizada pelo aumento da capacidade de resposta da traqueia e brônquios a vários estímulos e manifesta-se por ataques agudos, recorrentes e crônicos de amplo estreitamento das vias aéreas. Clinicamente, a asma é expressa por obstrução das vias aéreas, que envolve inflamação das vias aéreas pulmonares e hiperresponsividade brônquica, geralmente reversível. [ A década passada testemunhou aumentos fenomenais nas incidências de asma, mortes relacionadas à asma e hospitalização. As classes existentes de agentes antiasmáticos oferecem uma variedade limitada de ações que podem ser combinadas de maneira complementar e aditiva. Agentes orais individuais agem apenas em uma parte do processo patogênico da asma brônquica. Assim, eles podem não produzir qualquer cura e não podem prevenir todas as complicações da asma brônquica. Ayurveda recomendou o número de drogas de fontes vegetais indígenas para o tratamento da asma brônquica e outros distúrbios alérgicos. Moringa oleifera Lam. (Fam: Moringaceae ) ( M. oleifera ) é uma dessas drogas, usada por muitos médicos ayurvédicos para o tratamento da asma e do reumatismo crônico. [ ]

A moringa oleifera é uma árvore de tamanho médio, encontrada selvagem no trato sub-himalaio. A planta é relatada para provocar boa resposta clínica em crianças que sofrem de infecção do trato respiratório superior e infecção da pele. Sementes alegadamente têm purgante, antipirético, [  ] antiespasmódico, anti-inflamatória, [  ,  ] e diurético actividade. [  ] tem sido relatado que o alcalóide da planta se assemelha efedrina em acção e útil no tratamento de asma. Alcalóide Moringine relaxa bronquíolos. [ No entanto, até o momento, não foram realizados estudos clínicos com relação à sua eficácia na asma brônquica. Assim, o objetivo da presente investigação foi realizar avaliação clínica de M. oleifera para avaliar seu potencial terapêutico na asma.

Materiais e métodos

Os grãos de sementes de M. oleifera foram comprados no mercado local de Ahmedabad e foram identificados e autenticados pelo Departamento de Farmacognosia, LM College of Pharmacy, Ahmedabad, Índia. As sementes foram pulverizadas e as saquetas foram preparadas. Um estudo clínico aberto e não comparativo foi realizado em 20 pacientes (17-70 anos) de ambos os sexos, com asma brônquica leve a moderada, [  ] visitando o Departamento de Ambulatório do Hospital Ayurvédico do Governo, Ahmedabad, Índia. O protocolo para a realização do estudo clínico foi aprovado pelo Diretor do Departamento de Ayurveda e Medicina Homeopática, Governo de Gujarat, na Índia e também pelo comitê de ética institucional para o estudo clínico. O consentimento informado foi obtido de todos os pacientes incluídos no estudo.

Pacientes com sintomas de asma brônquica, como dispneia, chiado, aperto no peito e tosse foram incluídos no estudo. Pacientes com falta de ar devido a doenças cardiovasculares, com asma brônquica muito grave (taxa de fluxo expiratório [PFE] <20%, volume expiratório forçado no primeiro segundo [VEF 1] <20% do valor previsto) ou com tuberculose pulmonar (confirmada por triagem torácica ), doenças cardiovasculares e gestantes foram excluídas do estudo.

Os pacientes que satisfazem os critérios de inclusão e exclusão foram examinados para os dados demográficos iniciais. As funções respiratórias foram registradas com o auxílio do espirômetro e amostras de sangue foram retiradas para exame hematológico antes e posteriormente ao final de 3 semanas de tratamento com M. oleifera. O paciente foi solicitado a manter o bocal de espirômetro na boca e segurá-lo firmemente com a ajuda dos lábios. O paciente foi solicitado a respirar normalmente algumas vezes e depois inspirar profundamente, tanto quanto ele pode. Então, ele / ela é imediatamente instruído a soprar o mais forte e o mais rápido possível e continuar expirando até que ele não possa mais fazê-lo. O espirograma e os valores dos volumes pulmonares e das taxas de fluxo pulmonar obtidos foram registrados. Todo o processo foi repetido três vezes e os melhores resultados foram registrados. Os parâmetros avaliados foram capacidade vital forçada (CVF), volume expiratório forçado no primeiro segundo (VEF1), pico de fluxo expiratório (PFE) e fluxo expiratório forçado entre 25 e 75% (FEF 25-75%). O volume ventilatório máximo (VVM) foi determinado pedindo ao paciente que respirasse o mais rápido e duramente possível por 1 min.

Os pacientes receberam pó fino de grãos de sementes secas em uma dose de 3 g por três semanas e foram aconselhados a tomá-lo com água. Os pacientes receberam medicação por 1 semana e foram solicitados a relatar a cada semana. Na visita semanal, os pacientes foram solicitados para a ocorrência de qualquer efeito adverso (se houver) e melhora nos sintomas observados. A pontuação dos sintomas foi medida para todos os sintomas comumente observados de asma brônquica antes de iniciar o tratamento e ao final de 3 semanas de tratamento. O escore foi classificado como 3, 2, 1 e 0 para a presença de grave, moderado, leve e ausência de qualquer sintoma, respectivamente. [  ]

Análise estatística

Os valores foram expressos como média ± EPM. Os dados foram analisados ​​usando o teste t pareado de Student. O valor de ' P ' menor que 5% ( P <0,05) foi considerado significativo.


Características básicas como idade, altura, peso, frequência de pulso, pressão arterial, etc. dos pacientes são mostradas na Tabela 1 . O hábito de fumar foi encontrado em até 86% entre os pacientes do sexo masculino com asma. Também 25% dos pacientes foram encontrados para ter histórico familiar de asma. Vinte por cento dos pacientes foram encontrados para ter asma extrínseca (alérgica) e 80% foram encontrados para ter asma intrínseca (não alérgica). Houve uma redução significativa no escore de sintomas de todos os sintomas comumente observados de asma brônquica [ Figura 1 ]. Os parâmetros hematológicos não foram alterados marcadamente pelo tratamento com M. oleifera. No entanto, a maioria dos pacientes apresentou aumento significativo nos valores de Hb e a VHS foi significativamente reduzida [ Tabela 2 ].

Um arquivo externo que contém uma figura, ilustração, etc. O nome do objeto é IJPharm-40-28-g001.jpg

Efeito da M. oleifera no escore de sintomas. Cada barra representa a média ± SEM. * Significativamente diferente dos valores basais ( P <0,05) (teste t pareado de Student)

tabela 1

Características basais dos pacientes incluídos no teste de função pulmonar (TFP) da Moringa oleifera

Variáveis Média ± SEM Alcance
Anos de idade) 33,4 ± 3,48 17-70
Masculino feminino 14/06 -
Polegadas de altura) 63,64 ± 0,66 58-70
Peso (kg) 51,96 ± 1,32 38-64
Frequência cardíaca (batimentos / min) 75,72 ± 1,77 56-90
Asma, duração (ano) 5,26 ± 1,35 1-20
PA sistólica (mm Hg) 110,2 ± 2,58 95-150
PA diastólica (mm Hg) 74,2 ± 2,56 60-110

mesa 2

Efeito da Moringa oleifera no perfil hematológico de pacientes

Variáveis Valores de linha de base Depois do tratamento

Média ± SEM Alcance Média ± SEM Alcance
Hb (g%) 11,54 ± 0,18 10-13,5 11,90 ± 0,18 * 10-13,5
TC (por c mm) 7584 ± 226,54 5400-10400 6968 ± 196,28 5400-9800
Neutrófilo (%) 71,44 ± 5,0 60-81 67,8 ± 1,0 60 a 77
Lym (%) 26,68 ± 1,07 16-38 23,04 ± 1,00 12 a 34
Eosi (%) 1,8 0 ± 0,14 1-3 1,28 ± 0,09 0-2
Mono. (%) 1,44 ± 0,14 0-2 1,24 ± 0,08 0-2
ESR (mm / h) 17,4 ± 2,28 5 - 40 11,00 ± 1,47 * 5-35
* Significativamente diferente da linha de base ( P <0,05) (teste t pareado de Student)

Testes de espirometria antes e após 3 semanas de tratamento com M. oleifera revelaram aumento significativo da CVF e do VEF1. Os aumentos percentuais médios da CVF e do VEF1 foram 32,97 ± 6,03% e 30,05 ± 8,12%, respectivamente [ Tabela 3 ]. Melhoria também foi observada em% dos valores previstos. Vinte e cinco por cento dos pacientes estavam prevendo valores de CVF acima de 80% antes do tratamento com M. oleifera . Após o tratamento com M. oleifera , 40% dos pacientes apresentaram valores preditos de CVF acima de 80% [ Tabela 4 ]. Dos 20 pacientes, 50% dos pacientes apresentavam VEF1 <60% dos valores previstos antes do tratamento com M. oleifera , que foi reduzido para 35% dos pacientes [ Tabela 4]. Melhoria significativa no PEFR, FEF 25-75% e MVV foi observada com M. oleifera . O aumento médio percentual do PFE foi de 32,09 [ Tabela 3 ]. Quarenta por cento tinham PFE na faixa de 20-40% dos valores previstos antes do tratamento com M. oleifera . Após o tratamento, este foi diminuído para 20% dos pacientes com PFE <40% dos valores previstos [ Tabela 4 ].

Tabela 3

Efeito da Moringa oleifera nas funções pulmonares

Parâmetros Antes do tratamento (média ± SEM) Após o tratamento (média ± SEM) % De aumento (média ± SEM)
FVC (l) 1,942 ± 0,241 2,365 ± 0,220 *** 32,97 ± 6,03
VEF1 (l) 1,562 ± 0,251 1,896 ± 0,246 ** 30,05 ± 8,12
VEF1 / CVF (%) 70,546 ± 6,083 73,656 ± 5,531 6,112 ± 2,555
PEFR (l / s) 3,982 ± 0,541 4,758 ± 0,516 *** 32,09 ± 11,75
FEF 25-75% (l / s) 2,143 ± 0,57 2,22 ± 0,489 20,04 ± 10,64
MVV (l / min) 34,04 ± 2,76 46,97 ± 5,49 ** 34,95 ± 8,44
** P <0,01
*** P <0,001 (teste t pareado de Student)

Tabela 4

Efeito da Moringa oleifera na% de valores previstos

% De valores previstos Capacidade vital forçada (% de pacientes) Volume expiratório forçado no primeiro segundo (% dos pacientes) Pico de fluxo expiratório (% de pacientes)

Linha de base M. oleifera Linha de base M. oleifera Linha de base M. oleifera
20-40 10 10 15 10 40 20
40 a 60 35 20 35 25 25 30
60 a 80 30 30 20 25 20 10
80-100 25 40 30 40 15 40


Os resultados do nosso estudo clínico preliminar anterior sobre M. oleifera sugerem que houve uma redução significativa na gravidade dos sintomas da asma e também melhora simultânea nos parâmetros da função pulmonar. [  ] Os resultados do efeito da M. oleifera em quatro sintomas básicos da asma. asma brônquica (dispneia, chiado no peito, aperto no peito e tosse) revelou que a pontuação de todos os sintomas foi reduzida significativamente. De acordo com a teoria médica de Unani, a respiração obstrutiva pode ser devida a uma condição fleumática (esputo pegajoso espesso) e é produzida principalmente naqueles pacientes que têm temperamento fleumático. Moringa oleifera fruto é relatado para curar kapha . [ Nossos resultados apóiam a eficácia do M. oleifera na melhora dos sintomas da asma brônquica. Os resultados dos parâmetros hematológicos revelaram que a maioria dos pacientes apresentou aumento significativo em seus valores de Hb. Estas observações confirmam o relato anterior de que M. oleiferaaumenta os níveis de Hb em ratos. [  ]

Além da melhora nos sintomas, M. oleifera foi encontrado para melhorar significativamente a CVF e VEF1. A capacidade vital forçada é clinicamente útil como um índice da função pulmonar. O volume expirado forçado em um segundo é uma medida útil de quão rápido um pode expirar e os pulmões cheios podem ser esvaziados. É a melhor medida da função pulmonar para avaliar a limitação do fluxo aéreo ou a gravidade da asma. [  ] A moringa oleifera também melhora significativamente o PFE, o FEF 25-75% e a VVM. O pico de fluxo expiratório é um índice simples de função pulmonar usado tanto na pesquisa quanto na prática clínica. A resposta ao tratamento da asma geralmente é acompanhada por um aumento no valor do PFE e uma diminuição na sua variabilidade. [  ]

O aumento estatisticamente significativo dos volumes pulmonares (CVF e VEF1) e das taxas de fluxo pulmonar (PEFR, FEF 25-75% e MVV) sugere a utilidade da M. oleifera no tratamento da asma brônquica.

Assim, os resultados do nosso estudo sugerem que houve uma diminuição significativa na gravidade dos sintomas da asma e também melhora simultânea nas funções respiratórias. Nenhuma mudança em qualquer parâmetro geral e a ausência de qualquer efeito adverso durante o curso do estudo sugerem a segurança da droga na dose usada. Além disso, o perfil hematológico mostrou realce no nível de Hb. Considerando a fácil disponibilidade, conveniência e sua eficácia na administração oral, as sementes de M. oleifera podem ser consideradas como uma droga útil para a asma brônquica. No entanto, os estudos clínicos e experimentais detalhados são necessários para investigar seu mecanismo de ação e utilidade terapêutica dessas ervas.


Os autores agradecem ao Hospital Ayurvédico do Governo, Ahmedabad, por estender sua ajuda para realizar os estudos clínicos.


1. Fireman P. Entendendo a fisiopatologia da asma. Allergy Asthma Proc. 2003; 24 : 79–83. PubMed ]
2. Fahey JW. Moringa oleifera : Uma revisão das evidências médicas de suas propriedades nutricionais, terapêuticas e profiláticas: Parte I. Árvores para a Vida J. 2005; 1 : 5
3. Singh KK, Kumar K. Ethnotherapeutics de algumas plantas medicinais utilizadas como agentes antipiréticos entre as tribos da Índia. J Eco Taxo Botânica. 1999; 23 : 135-41.
4. Guevara AP, Vargas C, H Sakurai, Fujiwara Y, Hashimoto K. Maoka T. Mutat Res. 1999; 440 : 181-8. PubMed ]
5. Udupa SL, Udupa AL e Kulkarni DR. Estudos sobre as propriedades antiinflamatórias e cicatrizantes de Moringa e Aegle marmelos. Fitoterapia. 1994; 65 : 119–23.
6. Cáceres A, Saravia A, Rizzo S, L Zabala, De-Leão E, Nave F. Propriedades farmacológicas de M. oleifera 2: Triagem para atividade antiespasmódica, aniinflamatória e diurética. J Ethnopharmacol. 1992; 36 : 233-7. PubMed ]
7. Kirtikar KR, Basu BD. Plantas medicinais indianas. 2ª ed. Vol. 1. Dehradun: M / s Bishen Singh, Novo Lugar de Cannaught; 1975. pp. 676-83.
8. Bethesda MD. Estratégia global para o manejo e prevenção da asma. Iniciativa global para a asma, National Institutes of Health. 1995. Publicação no 95-3659.
9. Nayak A, Lanier R, Weinstein S, Stampone P, Welch M. Eficácia e segurança do aerossol extrafino de dipropionato de beclometasona na asma infantil: Um estudo randomizado, duplo-cego, controlado por placebo, de 12 semanas. Peito. 2002; 122 : 1956-1965. PubMed ]
10. Agarwal BB, Mehta AA. Um estudo clínico preliminar sobre Moringa oleifera em pacientes com asma brônquica. Planta Indica. 2006; 2 : 51–4.
11. Satyavati GV, Gupta AK. Plantas medicinais da Índia. Vol. 2. Nova Deli: ICMR; 1987. pp. 272-8.
12. Absar N, Uddin MR, Malek MA, Ahmad K. Estudos sobre vegetais verdes de Bangladesh-2: disponibilidade biológica de caroteno. Bangladesh J Bio Sci. 1977; 6-7 : 5–9.
13. Rob Pierce, David P. Espirometria manual: A medição e interpretação da função ventilatória na prática clínica. Austrália: McGraw-Hill; p. 3
14. Mead J, Tumer JM, Macklem PT, Little JB. Significância da relação entre recuo pulmonar e fluxo expiratório máximo. J Appl Physiol. 1967; 22 : 95-108. PubMed ]

Artigos do Indian Journal of Pharmacology são fornecidos aqui, cortesia de Wolters Kluwer - Medknow Publications

Validação Cientifica Saúde dos Olhos
Moringa oleifera: A Food Plant with
Multiple Medicinal Uses
Farooq Anwar
, Sajid Latif
, Muhammad Ashraf
and Anwarul Hassan Gilani
Department of Chemistry, University of Agriculture, Faisalabad-38040, Pakistan
Department of Botany, University of Agriculture, Faisalabad-38040, Pakistan
Department of Biological and Biomedical Sciences, Aga Khan University Medical College, Karachi-74800, Pakistan
Moringa oleifera Lam (Moringaceae) is a highly valued plant, distributed in many countries of the tropics
and subtropics. It has an impressive range of medicinal uses with high nutritional value. Different parts of this
plant contain a profile of important minerals, and are a good source of protein, vitamins,
-carotene, amino
acids and various phenolics. The Moringa plant provides a rich and rare combination of zeatin, quercetin,
sitosterol, caffeoylquinic acid and kaempferol. In addition to its compelling water purifying powers and high
nutritional value, M. oleifera is very important for its medicinal value. Various parts of this plant such as the
leaves, roots, seed, bark, fruit, flowers and immature pods act as cardiac and circulatory stimulants, possess
antitumor, antipyretic, antiepileptic, antiinflammatory, antiulcer, antispasmodic, diuretic, antihypertensive,
cholesterol lowering, antioxidant, antidiabetic, hepatoprotective, antibacterial and antifungal activities, and
are being employed for the treatment of different ailments in the indigenous system of medicine, particularly
in South Asia. This review focuses on the detailed phytochemical composition, medicinal uses, along with
pharmacological properties of different parts of this multipurpose tree. Copyright © 2006 John Wiley & Sons,
Moringa oleifera Lam (syn. M. ptreygosperma Gaertn.)
is one of the best known and most widely distributed
and naturalized species of a monogeneric family Morin-
gaceae (Nadkarni, 1976; Ramachandran et al., 1980).
The tree ranges in height from 5 to 10 m (Morton, 1991).
It is found wild and cultivated throughout the plains,
especially in hedges and in house yards, thrives best
under the tropical insular climate, and is plentiful near
the sandy beds of rivers and streams (The Wealth of
India, 1962; Qaiser, 1973). It can grow well in the
humid tropics or hot dry lands, can survive destitute
soils, and is little affected by drought (Morton, 1991).
It tolerates a wide range of rainfall with minimum
annual rainfall requirements estimated at 250 mm and
maximum at over 3000 mm and a pH of 5.09.0 (Palada
and Changl, 2003).
Moringa oleifera, native of the western and sub-
Himalayan tracts, India, Pakistan, Asia Minor, Africa
and Arabia (Somali et al., 1984; Mughal et al., 1999) is
now distributed in the Philippines, Cambodia, Central
America, North and South America and the Caribbean
Islands (Morton, 1991). In some parts of the world
M. oleifera is referred to as the ‘drumstick tree’ or the
‘horse radish tree’, whereas in others it is known as the
kelor tree (Anwar and Bhanger, 2003). While in the
Nile valley, the name of the tree is ‘Shagara al Rauwaq’,
which means ‘tree for purifying’ (Von Maydell, 1986).
In Pakistan, M. oleifera is locally known as ‘Sohanjna’
and is grown and cultivated all over the country (Qaiser,
1973; Anwar et al., 2005).
Moringa oleifera is an important food commodity
which has had enormous attention as the ‘natural
nutrition of the tropics’. The leaves, fruit, flowers and
immature pods of this tree are used as a highly nutri-
tive vegetable in many countries, particularly in India,
Pakistan, Philippines, Hawaii and many parts of Africa
(D’souza and Kulkarni, 1993; Anwar and Bhanger, 2003;
Anwar et al., 2005). Moringa leaves have been reported
to be a rich source of
-carotene, protein, vitamin C,
calcium and potassium and act as a good source of
natural antioxidants; and thus enhance the shelf-life of
fat containing foods due to the presence of various types
of antioxidant compounds such as ascorbic acid, flavo-
noids, phenolics and carotenoids (Dillard and German,
2000; Siddhuraju and Becker, 2003). In the Philippines,
it is known as ‘mother’s best friend’ because of its uti-
lization to increase woman’s milk production and is
sometimes prescribed for anemia (Estrella et al., 2000;
Siddhuraju and Becker, 2003).
A number of medicinal properties have been ascribed
to various parts of this highly esteemed tree (Table 1).
Almost all the parts of this plant: root, bark, gum, leaf,
fruit (pods), flowers, seed and seed oil have been used
for various ailments in the indigenous medicine of South
Asia, including the treatment of inflammation and
infectious diseases along with cardiovascular, gastro-
intestinal, hematological and hepatorenal disorders
Received 16 August 2006
Revised 13 Septemb
Stem bark
Medicinal Uses
Antilithic, rubefacient, vesicant, carminative, antifertility,
anti-inflammatory, stimulant in paralytic afflictions; act as a
cardiac/circulatory tonic, used as a laxative, abortifacient,
treating rheumatism, inflammations, articular pains, lower
back or kidney pain and constipation,
Purgative, applied as poultice to sores, rubbed on the
temples for headaches, used for piles, fevers, sore throat,
bronchitis, eye and ear infections, scurvy and catarrh; leaf
juice is believed to control glucose levels, applied to reduce
glandular swelling
Rubefacient, vesicant and used to cure eye diseases and for
the treatment of delirious patients, prevent enlargement of
the spleen and formation of tuberculous glands of the neck,
to destroy tumors and to heal ulcers. The juice from the root
bark is put into ears to relieve earaches and also placed in a
tooth cavity as a pain killer, and has anti-tubercular activity
Used for dental caries, and is astringent and rubefacient;
Gum, mixed with sesame oil, is used to relieve headaches,
fevers, intestinal complaints, dysentery, asthma and
sometimes used as an abortifacient, and to treat syphilis and
High medicinal value as a stimulant, aphrodisiac,
abortifacient, cholagogue; used to cure inflammations,
muscle diseases, hysteria, tumors, and enlargement of the
spleen; lower the serum cholesterol, phospholipid,
triglyceride, VLDL, LDL cholesterol to phospholipid ratio
and atherogenic index; decrease lipid profile of liver, heart
and aorta in hypercholesterolaemic rabbits and increased
the excretion of faecal cholesterol
Seed extract exerts its protective effect by decreasing liver
lipid peroxides, antihypertensive compounds thiocarbamate
and isothiocyanate glycosids have been isolated from the
acetate phase of the ethanolic extract of
(The Wealth of India, 1962; Singh and Kumar, 1999;
Morimitsu et al., 2000; Siddhuraju and Becker, 2003).
The seeds of Moringa are considered to be anti-
pyretic, acrid, bitter (Oliveira et al., 1999) and reported to
show antimicrobial activity (The Wealth of India, 1962).
The seed can be consumed fresh as peas; or pounded,
roasted, or pressed into sweet, non-desiccating oil, com-
mercially known as ‘Ben oil’ of high quality. The unique
property is the ability of its dry, crushed seed and seed
press cake, which contain polypeptides, to serve as natu-
ral coagulants for water treatment (Ndabigengesere and
Narasiah, 1998).
So far no comprehensive review has been compiled
from the literature encompassing the efficacy of this
plant in all dimensions. Its versatile utility as a medi-
cine, functional food, nutraceutical and water purify-
ing potential motivated us to bridge the information
gap in this area, and to write a comprehensive review
on the medicinal, phytochemical and pharmacological
attributes of this plant of high economic value.
Moringa oleifera is rich in compounds containing the
simple sugar, rhamnose and a fairly unique group of
compounds called glucosinolates and isothiocyanates
(Fahey et al., 2001; Bennett et al., 2003). The stem bark
has been reported to contain two alkaloids, namely
moringine and moringinine (Kerharo, 1969). Vanillin,
-sitosterol [14],
-sitostenone, 4-hydroxymellin and
octacosanoic acid have been isolated from the stem of
M. oleifera (Faizi et al., 1994a).
Purified, whole-gum exudate from M. oleifera has
been found to contain L-arabinose, -galactose, -glucuronic
acid, and L-rhamnose, -mannose and -xylose, while a
homogeneous, degraded-gum polysaccharide consisting
of L-galactose, -glucuronic acid and L-mannose has been
obtained on mild hydrolysis of the whole gum with acid
(Bhattacharya et al., 1982).
Flowers contain nine amino acids, sucrose, D-glucose,
traces of alkaloids, wax, quercetin and kaempferat; the
ash is rich in potassium and calcium (Ruckmani et al.,
1998). They have also been reported to contain some
flavonoid pigments such as alkaloids, kaempherol,
rhamnetin, isoquercitrin and kaempferitrin (Faizi et al.,
1994a; Siddhuraju and Becker, 2003).
Antihypertensive compounds thiocarbamate and
isothiocyanate glycosides have been isolated from the
acetate phase of the ethanol extract of Moringa pods
(Faizi et al., 1998). The cytokinins have been shown
to be present in the fruit (Nagar et al., 1982). A new
-L-rhamnosyloxy)benzyl carbamate [11]
able 2. Sterol composition (grams per 100 g of fatty acids) of the M. oleifera oils
Anwar and Lalas and Tsaknis
et al
Sterol Bhanger, 2003 Tsaknis, 2002 1999
Cholesterol Not reported 0.10 0.13
Brassicasterol Not reported 0.05 0.06
24-methylenecholesterol 1.49 0.08 0.88
Campesterol 16.00 15.29 15.13
Campestanol Not reported 0.33 0.35
-campestanol 0.50 Not reported Not reported
Stigmasterol 19.00 23.06 16.87
Ergostadienol Not reported 0.35 0.39
Clerosterol 1.95 1.22 2.52
Stigmastanol 1.00 0.64 0.86
-sitosterol 46.65 43.65 50.07
-avenasterol 0.96 Not detected 1.11
-avenasterol 10.70 11.61 8.84
28-isoavenasterol 0.50 0.25 1.40
Stigmastadienol Not reported 0.39 Not reported
Stigmastanol Not reported 0.85
has been shown to increase vigorously with the appli-
cation of an aqueous-ethanol extract (Bose, 1980) of
M. oleifera leaves, although the nature of the active
ingredient is still unknown. Moringa leaves act as a
good source of natural antioxidant due to the presence
of various types of antioxidant compounds such as ascor-
bic acid, flavonoids, phenolics and carotenoids (Anwar
et al., 2005; Makkar and Becker, 1996). The high con-
centrations of ascorbic acid, oestrogenic substances and
-sitosterol [16], iron, calcium, phosphorus, copper, vi-
tamins A, B and C,
-tocopherol, riboflavin, nicotinic
acid, folic acid, pyridoxine,
-carotene, protein, and in
particular essential amino acids such as methionine,
cystine, tryptophan and lysine present in Moringa leaves
and pods make it a virtually ideal dietary supplement
(Makkar and Becker, 1996).
The composition of the sterols of Moringa seed oil
mainly consists of campesterol, stigmasterol,
-avenasterol and clerosterol accompanied by minute
amounts of 24-methylenecholesterol,
stigmastanol and 28-isoavenasterol (Tsaknis et al., 1999;
Anwar and Bhanger, 2003; Anwar et al., 2005; Table 2).
The sterol composition of the major fractions of Moringa
seed oil differs greatly from those of most of the con-
ventional edible oils (Rossell, 1991). The fatty acid com-
position of M. oleifera seed oil reveals that it falls in
the category of high-oleic oils (C18:1, 67.90%–76.00%).
Among the other component fatty acids C16:0 (6.04%–
7.80%), C18:0 (4.14%–7.60%), C20:0 (2.76%–4.00%),
and C22:0 (5.00%–6.73%) are important (Tsaknis et al.,
1999; Anwar and Bhanger, 2003; Anwar et al., 2005).
Moringa oleifera is also a good source of different
tocopherols (
- and
-); the concentration of those
is reported to be 98.82–134.42, 27.90–93.70, and 48.00
71.16 mg/kg, respectively (Anwar and Bhanger, 2003;
Tsaknis et al., 1999).
Moringa oleifera also has numerous medicinal uses,
which have long been recognized in the Ayurvedic and
Unani systems of medicine (Mughal et al., 1999). The
medicinal attributes (Table 1) and pharmacological
activities ascribed to various parts of Moringa are
detailed below.
Antihypertensive, diuretic and cholesterol lowering
The widespread combination of diuretic along with lipid
and blood pressure lowering constituents make this plant
highly useful in cardiovascular disorders. Moringa leaf
juice is known to have a stabilizing effect on blood pres-
sure (The Wealth of India, 1962; Dahot, 1988). Nitrile,
mustard oil glycosides and thiocarbamate glycosides
have been isolated from Moringa leaves, which were
found to be responsible for the blood pressure lower-
ing effect (Faizi et al., 1994a; 1994b; 1995). Most of
these compounds, bearing thiocarbamate, carbamate or
nitrile groups, are fully acetylated glycosides, which are
very rare in nature (Faizi et al., 1995). Bioassay guided
fractionation of the active ethanol extract of Moringa
leaves led to the isolation of four pure compounds,
niazinin A [1], niazinin [1] B, niazimicin [4] and niazinin
A B which showed a blood pressure lowering effect
in rats mediated possibly through a calcium antagonist
effect (Gilani et al., 1994a).
Another study on the ethanol and aqueous extracts
of whole pods and its parts, i.e. coat, pulp and seed
revealed that the blood pressure lowering effect of seed
was more pronounced with comparable results in both
ethanol and water extracts indicating that the activity
is widely distributed (Faizi et al., 1998). Activity-directed
fractionation of the ethanol extract of pods of M.
oleifera has led to the isolation of thiocarbamate and
isothiocyanate glycosides which are known to be the
hypotensive principles (Faizi et al., 1995). Methyl p-
hydroxybenzoate and
-sitosterol (14), investigated in
the pods of M. oleifera have also shown promising
hypotensive activity (Faizi et al., 1998).
Moringa roots, leaves, flowers, gum and the aqueous
infusion of seeds have been found to possess diuretic
activity (Morton, 1991; Caceres et al., 1992) and such
diuretic components are likely to play a complementary
role in the overall blood pressure lowering effect of
this plant.
The crude extract of Moringa leaves has a significant
cholesterol lowering action in the serum of high fat
diet fed rats which might be attributed to the presence
of a bioactive phytoconstituent, i.e.
-sitosterol (Ghasi
et al., 2000). Moringa fruit has been found to lower
the serum cholesterol, phospholipids, triglycerides, low
density lipoprotein (LDL), very low density lipoprotein
(VLDL) cholesterol to phospholipid ratio, atherogenic
index lipid and reduced the lipid profile of liver,
heart and aorta in hypercholesteremic rabbits and
increased the excretion of fecal cholesterol (Mehta
et al., 2003).
Antispasmodic, antiulcer and hepatoprotective
M. oleifera roots have been reported to possess anti-
spasmodic activity (Caceres et al., 1992). Moringa leaves
have been extensively studied pharmacologically and it
has been found that the ethanol extract and its con-
stituents exhibit antispasmodic effects possibly through
calcium channel blockade (Gilani et al., 1992; 1994a;
Dangi et al., 2002). The antispasmodic activity of the
ethanol extract of M. oleifera leaves has been attrib-
uted to the presence of 4-[
-(L-rhamnosyloxy) benzyl]-
o-methyl thiocarbamate [3] (trans), which forms the
basis for its traditional use in diarrhea (Gilani et al.,
1992). Moreover, spasmolytic activity exhibited by dif-
ferent constituents provides pharmacological basis for
the traditional uses of this plant in gastrointestinal
motility disorder (Gilani et al., 1994a).
The methanol fraction of M. oleifera leaf extract
showed antiulcerogenic and hepatoprotective effects in
rats (Pal et al., 1995a). Aqueous leaf extracts also showed
antiulcer effect (Pal et al., 1995a) indicating that the
antiulcer component is widely distributed in this plant.
Moringa roots have also been reported to possess
hepatoprotective activity (Ruckmani et al., 1998). The
aqueous and alcohol extracts from Moringa flowers were
also found to have a significant hepatoprotective effect
(Ruckmani et al., 1998), which may be due to the pres-
ence of quercetin, a well known flavonoid with hepato-
protective activity (Gilani et al., 1997).
Antibacterial and antifungal activities
Moringa roots have antibacterial activity (Rao et al.,
1996) and are reported to be rich in antimicrobial agents.
These are reported to contain an active antibiotic prin-
ciple, pterygospermin [8], which has powerful antibac-
terial and fungicidal effects (Ruckmani et al., 1998). A
similar compound is found to be responsible for the anti-
bacterial and fungicidal effects of its flowers (Das et al.,
1957). The root extract also possesses antimicrobial
activity attributed to the presence of 4-
benzyl isothiocyanate [3] (Eilert et al., 1981). The aglyc-
one of deoxy-niazimicine (N-benzyl, S-ethyl thiofor-
mate) [7] isolated from the chloroform fraction of
an ethanol extract of the root bark was found to be
responsible for the antibacterial and antifungal activi-
ties (Nikkon et al., 2003). The bark extract has been
shown to possess antifungal activity (Bhatnagar et al.,
1961), while the juice from the stem bark showed anti-
bacterial effect against Staphylococcus aureus (Mehta
et al., 2003). The fresh leaf juice was found to inhibit
the growth of microorganisms (Pseudomonas aeruginosa
and Staphylococcus aureus), pathogenic to man (Caceres
et al., 1991).
Antitumor and anticancer activities
Makonnen et al. (1997) found Moringa leaves to be
a potential source for antitumor activity. O-Ethyl-
-L-rhamnosyloxy)benzyl carbamate [11] together
with 4(
-L-rhamnosyloxy)-benzyl isothiocyanate [3],
niazimicin [4] and 3-O-(6-O-oleoyl-
-sitosterol [15] have been tested for their potential
antitumor promoting activity using an in vitro assay
which showed significant inhibitory effects on Epstein–
Barr virus-early antigen. Niazimicin has been proposed
to be a potent chemopreventive agent in chemical car-
cinogenesis (Guevara et al., 1999). The seed extracts
have also been found to be effective on hepatic car-
cinogen metabolizing enzymes, antioxidant parameters
and skin papillomagenesis in mice (Bharali et al., 2003).
A seed ointment had a similar effect to neomycin against
Staphylococcus aureus pyodermia in mice (Caceres and
Lopez, 1991).
It has been found that niaziminin [9
10], a thio-
carbamate from the leaves of M. oleifera, exhibits inhi-
bition of tumor-promoter-induced Epstein–Barr virus
activation. On the other hand, among the isothiocyanates,
naturally occurring 4-[(4-O-acetyl-
benzyl] [2], significantly inhibited tumor-promoter-
induced Epstein–Barr virus activation, suggesting that
the isothiocyano group is a critical structural factor for
activity (Murakami et al., 1998).
Other diverse activities
Moringa oleifera has also been reported to exhibit other
diverse activities. Aqueous leaf extracts regulate thy-
roid hormone and can be used to treat hyperthyroidism
and exhibit an antioxidant effect (Pal et al., 1995a; 1995b;
Tahiliani and Kar, 2000). A methanol extract of M.
oleifera leaves conferred significant radiation protec-
tion to the bone marrow chromosomes in mice (Rao
et al., 2001). Moringa leaves are effective for the regu-
lation of thyroid hormone status (Tahiliani and Kar,
A recent report showed that M. oleifera leaf may be
applicable as a prophylactic or therapeutic anti-HSV
(Herpes simplex virus type 1) medicine and may be
effective against the acyclovir-resistant variant (Lipipun
et al., 2003). Table 1 depicts some common medicinal
uses of different parts of this plant. The flowers and
leaves also are considered to be of high medicinal value
with anthelmintic activity (Bhattacharya et al., 1982).
An infusion of leaf juice was shown to reduce glucose
levels in rabbits (Makonnen et al., 1997).
Moringa oleifera is coming to the forefront as a re-
sult of scientific evidence that Moringa is an important
source of naturally occurring phytochemicals and this
provides a basis for future viable developments. Differ-
ent parts of M. oleifera are also incorporated in various
marketed health formulations, such as Rumalaya and
Septilin (the Himalaya Drug Company, Bangalore,
India), Orthoherb (Walter Bushnell Ltd, Mumbai, In-
dia), Kupid Fort (Pharma Products Pvt. Ltd, Thayavur,
India) and Livospin (Herbals APS Pvt. Ltd, Patna,
India), which are reputed as remedies available for
a variety of human health disorders (Mehta et al.,
Moringa seeds have specific protein fractions for
skin and hair care. Two new active components for
the cosmetic industry have been extracted from oil cake.
consists of peptides of the Moringa seed. It
protects the human skin from environmental influences
and combats premature skin aging. With dual activity,
antipollution and conditioning/strengthening of hair, the
M. oleifera seed extract is a globally acceptable innova-
tive solution for hair care (Stussi et al., 2002).
Moringa seeds as coagulant
Moringa seeds are one of the best natural coagulants
discovered so far (Ndabigengesere and Narasiah, 1998).
Crushed seeds are a viable replacement of synthetic
coagulants (Kalogo et al., 2000). In Sudan, seed crude
extract is used instead of alum by rural women to treat
the highly turbid Nile water because of a traditional
fear of alum causing gastrointestinal disturbances and
Alzheimer’s disease (Crapper et al., 1973; Miller et al.,
1984; Martyn et al., 1989; Muyibi, 1994).
Moringa seeds are very effective for high turbidity
water and show similar coagulation effects to alum
(Muyibi and Evison, 1995b). The coagulation effective-
ness of M. oleifera varies depending on the initial tur-
bidity and it has been reported that M. oleifera could
reduce turbidity by between 92% and 99% (Muyibi
and Evison, 1995b). Moringa seeds also have softening
properties in addition to being a pH correctant (alka-
linity reduction), as well as exhibiting a natural buffer-
ing capacity, which could handle moderately high to
high alkaline surface and ground waters. The Moringa
seeds can also be used as an antiseptic in the treatment
of drinking water (Obioma and Adikwu, 1997).
Ongoing research is attempting to characterize and
purify the coagulant components of Moringa seeds
(Ndabigengesere et al., 1995; Gassenschmidt et al., 1995).
It is believed that the seed is an organic natural poly-
mer (Jahn, 1984). The active ingredients are dimeric
proteins with a molecular weight of about 1300 Da and
an iso-electric point between 10 and 11 (Ndabigengesere
et al., 1995). The protein powder is stable and totally
soluble in water.
Moringa coagulant protein can be extracted by water
or salt solution (commonly NaCl). The amount and
effectiveness of the coagulant protein from salt and
water extraction methods vary significantly. In crude
form, the salt extract shows a better coagulation per-
formance than the corresponding water extract (Okuda
et al., 1999). This may be explained by the presence of
a higher amount of soluble protein due to the salting-in
phenomenon. However, purification of the M. oleifera
coagulant protein from the crude salt extract may not
be technically and economically feasible.
The coagulation mechanism of the M. oleifera coagu-
lant protein has been explained in different ways. It
has been described as adsorption and charge neutraliza-
tion (Ndabigengesere et al., 1995; Gassenschmidt et al.,
1995) and interparticle bridging (Muyibi and Evison,
1995a). Flocculation by inter-particle bridging is mainly
characteristic of high molecular weight polyelectrolytes.
Due to the small size of the M. oleifera coagulant pro-
tein (6.5–13 kDa), a bridging effect may not be con-
sidered as the likely coagulation mechanism. The high
positive charge (pI above 10) and small size may sug-
gest that the main destabilization mechanism could be
adsorption and charge neutralization.
Microbial elimination with Moringa seeds
Moringa seeds also possess antimicrobial properties
(Olsen, 1987; Madsen et al., 1987). Broin et al. (2002)
reported that a recombinant protein in the seed is able
to flocculate Gram-positive and Gram-negative bac-
terial cells. In this case, microorganisms can be removed
by settling in the same manner as the removal of col-
loids in properly coagulated and flocculated water
(Casey, 1997). On the other hand, the seeds may also
act directly upon microorganisms and result in growth
inhibition. Antimicrobial peptides are thought to act
by disrupting the cell membrane or by inhibiting essen-
tial enzymes (Silvestro et al., 2000; Suarez et al., 2003).
Sutherland et al. (1990) reported that Moringa seeds
could inhibit the replication of bacteriophages. The an-
timicrobial effects of the seeds are attributed to the
compound 4(
-L-rhamnosyloxy) benzyl isothiocynate
(Eilert et al., 1981).
Moringa seeds as biosorbent
Moringa seeds could be used as a less expensive bio-
sorbent for the removal of cadmium (Cd) from aque-
ous media (Sharma et al., 2006). The aqueous solution
of Moringa seed is a heterogeneous complex mixture
having various functional groups, mainly low molecular
weight organic acids (amino acids). These amino acids
have been found to constitute a physiologically active
group of binding agents, working even at a low concen-
tration, which because of the ability to interact with
metal ions is likely to increase the sorption of metal
ions (Brostlap and Schuurmans, 1988). The proteineous
amino acids have a variety of structurally related pH
dependent properties, generating a negatively charged
atmosphere and play an important role in the binding
of metals (Sharma et al., 2006).
So far numerous studies have been conducted on dif-
ferent parts of M. oleifera, but there is a dire need to
isolate and identify new compounds from different parts
of the tree, which have possible antitumor promoters
as well as inhibitory properties. Although preliminary
studies are under way in different laboratories to use
the antispasmodic, antiinflammatory, antihypertensive
and diuretic activities of M. oleifera seed, these studies
should be extended to humans in view of the edible
nature of the plant. Moringa roots and leaves have been
used traditionally to treat constipation. Studies to verify
these claims need to be carried out in the light of the
reported antispasmodic activities, which are contrary
to its medicinal use as a gut motility stimulant. Earlier
studies on the presence of a combination of spasmogenic
and spasmolytic constituents in different plants used
for constipation (Gilani et al., 2000; 2005a; Bashir et al.,
2006) might be of some guidance in designing experi-
ments in which the presence of antispasmodic constitu-
ents at higher doses are explained as a possible mode
to offset the side-effects usually associated with high
dose of laxative therapy. Similarly, the known species
differences in the pharmacological actions of medicinal
plants (Ghayur et al., 2005; Ghayur and Gilani, 2006)
may also be taken into account when planning studies
involving contradictory results.
Food plants are considered relatively safe as they are
likely to contain synergistic and/or side effect neutra-
lizing combinations of activities (Gilani and Atta-ur-
Rahman, 2005). Moringa oleifera, known to be rich in
multiple medicinally active chemicals, may be a good
candidate to see if it contains effect enhancing and/or
side-effects neutralizing combinations. Medicinal plants
are relatively rich in their contents of calcium channel
blockers (CCBs) which are known to possess a wide
variety of pharmacological activities such as antihyper-
tensive, hepatoprotective, antiulcer, antiasthmatic, anti-
spasmodic and antidiarroeal (Stephens and Rahwan,
1992; Gilani et al., 1994b; 1999; 2005b; Yaeesh et al.,
2006; Ghayur et al., 2006) and it remains to be seen
whether such activities reported to be present in
Moringa oleifera have a direct link with the presence of
Niazimicin, a potent antitumor promoter in chemical
carcinogenesis is present in the seed; its inhibitory
mechanism on tumor proliferation can be investigated
by isolating more pure samples. The mechanism of ac-
tion of M. oleifera as prophylactic or therapeutic anti-
HSV medicines for the treatment of HSV-1 infection
also needs to be examined.
The available information on the
- and
tocopherol content in samples of various parts of this
edible plant is very limited.
-Carotene and vitamins A
and C present in M. oleifera, serve as an explanation
for their mode of action in the induction of antioxidant
profiles, however, the exact mechanism is yet to be elu-
-Carotene of M. oleifera leaves exerts a more
significant protective activity than silymarin against anti-
tubercular induced toxicity. It would be interesting to
see if it also possesses hepatoprotective effect against
other commonly used hepatotoxic agents such as CCl
and galactosamine, which are considered more suitable
models and close to human viral hepatitis (Gilani and
Janbaz, 1995; Yaeesh et al., 2006).
Although Moringa leaves are considered a best pro-
tein source, it still has to be shown whether or not this
protein source could compete with the more common
protein sources in highly productive growing or milk-
producing ruminants.
Many studies have also been conducted on the per-
formance of Moringa seeds as an alternative coagulant,
coagulant aid and in conjunction with alum for treating
waste water. Therefore, it is important to identify the
active constituents of Moringa seed for a better under-
standing of the coagulation mechanism. Reports on the
antimicrobial effects of the protein purified from M.
oleifera are very rare.
Since this plant naturally occurs in varying habitats,
it is naïve to expect a great magnitude of variation in
the concentration and composition of chemical ingre-
dients in different parts of the tree. However, the
extent to which the chemical composition varies in
populations adapted to varying habitats is not known.
Thus, detailed studies are required to examine this
In view of its multiple uses, the M. oleifera plant
needs to be widely cultivated in most of the areas where
climatic conditions favor its optimum growth. In this
way, a maximum yield of its different useable parts
could be achieved to derive the maximal amount of
commodities of a multifarious nature for the welfare of
Anwar F, Ashraf M, Bhanger MI. 2005. Interprovenance vari-
ation in the composition of
Moringa oleifera
oilseeds from
J Am Oil Chem Soc
82: 4551.
Anwar F, Bhanger MI. 2003. Analytical characterization of
Moringa oleifera
seed oil grown in temperate regions of
J Agric Food Chem
51: 65586563.
Bashir S, Janbaz KH, Jabeen Q, Gilani AH. 2006. Studies on
spasmogenic and spasmolytic activities of
Phytother Res
20: 906910.
Bennett RN, Mellon FA, Foidl N
et al.
2003 Profiling gluco-
sinolates and phenolics in vegetative and reproductive
tissues of the multi-purpose trees
Moringa oleifera
L. (Horse-
radish tree) and
Moringa stenopetala
J Agric Food Chem
51: 3546–3553.
Bharali R, Tabassum J, Azad MRH. 2003. Chemomodulatory
effect of
Moringa oleifera
, Lam, on hepatic carcinogen
metabolizing enzymes, anti-oxidant parameters and skin
papillomagenesis in mice.
Asia Pacific J Cancer Prev
4: 131–139.
Bhatnagar SS, Santapau H, Desai JDH, Yellore S, Rao TNS.
1961. Biological activity of Indian medicinal plants. Part 1.
Antibacterial, antitubercular and antifungal action.
Indian J
Med Res
49: 799805.
Bhattacharya SB, Das AK, Banerji N. 1982. Chemical investiga-
tions on the gum exudates from Sonja (
Moringa oleifera
Carbohydr Res
102: 253–262.
Bose B. 1980. Enhancement of nodulation of
Vigna mungo
ethanolic extract of Moringa leaves – a new report.
Acad Sci Lett
3: 103–104.
Broin M, Santaella C, Cuine S, Kokou K, Peltier G, Joet T. 2002.
Flocculent activity of a recombinant protein from
Lam. seeds.
Appl Microbiol Biotechnol
60: 114
Brostlap AC, Schuurmans J. 1988. Kinetics of valine uptake in
tobacco leaf disc. Comparison of wild types the digenic
mutant and its monogenic derivatives.
176: 42–
Caceres A, Cabrera O, Morales O, Mollinedo P, Mendia P. 1991.
Pharmacological properties of
Moringa oleifera
. 1: Prelimi-
nary screening for antimicrobial activity.
J Ethnopharmacol
33: 213–216.
Caceres A, Lopez S. 1991. Pharmacologic properties of
3: Effect of seed extracts in the treatment of
62: 449450.
Caceres A, Saravia A, Rizzo S, Zabala L, Leon ED, Nave F. 1992.
Pharmacologic properties of
Moringa oleifera:
2: Screening
Validação Cientifica Polivitaminico

Aprovechamiento Poscosecha de la… Magaña Benitez Wilberth (2012)
Rev. Iber. Tecnología Postcosecha Vol 13(2):171-174 171
Ingeniería!en!Industrias!Alimentarias!2!Instituto!Tecnológico!Superior!de!Escárcega!–!Calle!85! s/n!entre!102B,!
Colonia.! Unidad,! Esfuerzo! y! Trabajo! No.! 2,! Escárcega,! Campeche,! México.! CP! 24350.! Tel.! (522982)! 8241918.!!
Email:[email protected]
es! considerada! como! una! alternativa! alimentaria! en! México.! El! objetivo! es! encontrar! estudios! realizados! en!
poscosecha! (físicos,! fisiológicos,! bioquímicos,!etc.)! para! demostrar! que!el! cultivo! de!la!moringa!es! una! de!las!
realizado! en! estudios! físicos,! fisiológicos! y! bioquímicos! en! todo! el! sistema! planta;! así! como! estudios! de!
demostrar! que! la! moringa! es! técnica! y! financieramente! rentable! un! cultivo! alternativo! en! la! dieta! y! salud!
chain! system! profitable! product! for! producers! in! the! region! Yucatan! Peninsula.! In! Escarcega! has! established!
three! moringa! plantations! of! small! surface! for! human! consumption,! but! have! not! been! studied! physical,!
physiological! and! biochemical! plant! in! the! whole! system,! as! well! as! laboratory! study:! chemical! analyzes! and!
nutrient! content! of! fruits! and! leaves! of! the! plant! for! fo
Aprovechamiento Poscosecha de la… Magaña Benitez Wilberth (2012)
172 Rev. Iber. Tecnología Postcosecha Vol 13(2):171-174
alimenticios! de! África,! o! el! árbol! del! rábano!
picante,! por! el! sabor! de! sus! raíces! (Berger! et!
al.,! 1984).! La! moringa! ofrece! una! amplia!
variedad! de! productos! alimenticios,! ya! que!
todas!las! partes! de!la! planta! son! comestibles:!
las! vainas! verdes! (parecidas! a! las! legumbres),!
las! hojas,! las! flores,! las! semillas! (negruzcas! y!
se! pueden! usar! para!el! consumo! humano! por!
su! alto! contenido! en! proteínas,! vitaminas! y!
minerales! (Berger! et! al.,! 1984).! Las! hojas! de!
moringa! tienen! grandes! cualidades! nutritivas.!
Según! un! estudio! de! la! FAO,! el! contenido! de!
proteínas!es! del! 27! por! ciento! (tanto! como!el!
huevo! y! el! doble! que! la! leche)! y! tiene!
cantidades! significativas! de! calcio! (cuatro!
veces! más! que! la! leche),! hierro,! fósforo! y!
potasio! (tres! veces!más! que! los! plátanos),! así!
como! vitamina! A! (cuatro! veces! más! que! las!
zanahorias)! y! C! (siete! veces! más! que! las!
secas,! cuando! no! hay! otros! vegetales!
áreas! donde! la! seguridad! alimentaria! puede!
verse! amenazada! por! períodos! de! sequía,!
Moringa! es! un! género! de! plantas! con!
numerosas! especies! distribuidas! por! Zonas!
Áridas! y! Semiáridas! de! Asia,! África! y!
Madagascar.! La! especie! más! conocida! es!
Moringa! oleifera! y! su! principal! utilidad! es! de!
complemento! alimenticio.! La! moringa! se! está!
bajo! coste! de! producción! para! prevenir! la!
desnutrición! y! múltiples! patologías,! como! la!
ceguera! infantil,! asociadas! a! carencias! de!
vitaminas! y! elementos! esenciales! en! la! dieta.!
Esta! planta! tiene! un! futuro! prometedor! en! la!
industria! dietética! y! como! alimento! proteico!
para! deportistas! especialmente! atendiendo! a!
su! carácter! de! alimento! natural! (Das! et! al.,!
de! ser! muy! nutritivas.! La! realización! del!
trabajo! de! investigación! en! Escárcega! les!
otorgaría! a! los! productores! de! la! región! la!
aplicación! que! pueden! tener! al! cultivar! esta!
especie,! ya! que! hasta! el! momento! se!
desconoce! en! la! región! sus! múltiples!
aprovechamientos! comestibles! e! industriales!
que! se! obtendrían! tanto! de! la! fruta! como! de!
otras! partes! vegetativas! y! reproductivas! de! la!
la! región! al! elaborar! la! materia! prima! en!
alimentos! industrializados,! generándole! un!
valor! agregado! al! producto!en! fresco! durante!
presente! trabajo!se!incluyen! tópicos!sobre!las!
diversas! utilidades! de! la! Moringa! en! la!
La! Moringa' oleifera! es! un! árbol! de!
crecimiento! muy! rápido,! en! el! primer! año! se!
puede! desarrollar! varios! metros,! hasta! tres! o!
se! beneficia! de! algún! riego! esporádico.!
de! fertilizante! (no! es! un! árbol! fijador! de!
10! 2! 12! metros.! La! copa! es! poco! densa,! de!
forma! abierta,! tirando! a! sombrilla! (tipo!
acacia),! el! tronco! puede! ser! único! o! múltiple!
(más! común! único).! El! sistema! radicular! es!
aparecen! principalmente! en! las! épocas! de!
pero! de! sección! triangular,! de! unos! 30! 2! 45!
cms! de! longitud.! Las! semillas! son! negruzcas,!
Aprovechamiento Poscosecha de la… Magaña Benitez Wilberth (2012)
Rev. Iber. Tecnología Postcosecha Vol 13(2):171-174 173
Distribución.! Originaria! del! Subcontinente!
Indio,! actualmente! está! ampliamente!
distribuida! por! los! trópicos! donde! ha! sido!
introducida! por! su! carácter! ornamental.! Muy!
recientemente! este! árbol! está! captando! una!
uno! de! los! proyectos! de! desarrollo! más!
importantes! de! Agrodesierto,! a! continuación!
• Comestibilidad:! Todas! las! partes! de! la!
planta! son! comestibles.! El! contenido! de!
proteínas,! vitaminas! y! minerales! es!
sobresaliente.! El! sabor! es! agradable! y! las!
diversas! partes! se! pueden! consumir! crudas!
(especialmente! las! hojas! y! flores)! o! cocinadas!
de! diversas! maneras! (Gassensschmidt! et! al.,!
• Depuración'de'Aguas:!Las!semillas!son!
de! mucha! utilidad! como! uno! de! los! mejores!
floculantes! naturales! conocidos! y! se! emplean!
ampliamente! en! la! depuración! y! purificación!
la! caña! de! azúcar! (Gassensschmidt! et! al.,!
• Aceite:!La!semilla!de!Moringa!contiene!
un! 35! %! de! aceite.! Es! un! aceite! de! muy! alta!
ácido! oleico,! de! calidad! por! tanto! similar! al!
aceite! de! oliva.! Empleado! en! cocina,! no! se!
vuelve! rancio,! muy! bueno! para! aliño! de!
ensaladas.! También! puede! tener! interesantes!
aplicaciones! en! lubricación! de! mecanismos! y!
arde! sin! producir! humo,! es! apto! por! tanto!
como! combustible! para! lámparas! (Tsaknis! et!
• Forraje' para' animales:! Las! hojas! de!
Moringa! constituyen! uno! de! los! forrajes! más!
en! proteína,! vitaminas! y! minerales! y! con! una!
palatabilidad! excelente! las! hojas! son!
ávidamente! consumida! por! todo! tipo! de!
animales:! Rumiantes,! camellos,! cerdos,! aves,!
incluso! carpas,! tilapiuas! y! otros! peces!
• Melífero:! El! árbol! en! flor! es! una!
importantísima! fuente! de! néctar! para! las!
Tabla- comparativa- del- contenido- nutritivo- de- lashojas-
de- Moringa- oleifera- - con- otros- alimentos-
Nutriente Moringa Otros-alimentos
Vitamina!A!(mg) !!!!!1,130 Zanahorias:!315
Vitamina!C!(mg) !!!!!!!!!220 Naranjas:!30
Calcio!(mg) !!!!!!!!!440 Leche!de!vaca:!120
Potasio!(mg) !!!!!!!!!259 Plátanos:!88
Proteínas!(mg) !!!!!6,700 Leche!de!vaca:!3,200
Como! se! observa! en! la! tabla! comparativa,!
la! Moringa! oleifera! posee! cualidades!
nutricionales! sobresalientes! y! está!
considerada! como! uno! de! los! mejores!
un! porcentaje! superior! al! 25%! de! proteínas,!
leche,! cuatro! veces! la! cantidad! de! vitamina! A!
calcio! de! la! leche,! siete! veces! la! cantidad! de!
vitamina! C! de! las! naranjas,! tres! veces! más!
potasio! que! los! plátanos,! cantidades!
significativas! de! hierro,! fósforo! y! otros!
elementos! (Makonnen! y! Hunde,! 1997).!!
Difícilmente! se! puede! encontrar! un! alimento!
se! pueden! consumir! frescas! o! preparadas! de!
diferentes! maneras! (tabla! comparativa).! Los!
Se! ha! obtenido! información! favorable! de!
estudios! agronómicos! y! de! laboratorio! en!
Aprovechamiento Poscosecha de la… Magaña Benitez Wilberth (2012)
174 Rev. Iber. Tecnología Postcosecha Vol 13(2):171-174
realizados! en! México,! que! servirán! de!
en! el! Instituto! Tecnológico! Superior! de!
Escárcega,! teniendo! como! soporte! la!
Al! Instituto! Tecnológico! Superior! de!
Berger,! M.R.,! M.! Habs,! S.A.! Jahn! and! S.!
Schmahl.! 1984.! Toxicological! assessment!
of! seeds! from! Moringa! oleifera! and!
Moringa! stenopetala,! two! highly!efficient!
primary! cuagulants! for! domestic! water!
treatment! of! tropical! raw! water.! East!
Leon! and! F.! Nave.! 1992.! Pharmacologic!
properties! of! Moringa! oleífera.! 2:!
Screening! for! antipasmodic,!
antiinflammatory! and! diuretic! activity.!
Journal! of! Ethnopharmacology! 36:! 233! 2
1954.! Antibiotic! principle! from! Moringa!
pterygosperma.! Naturwissenschaften!
Fuglie,! L.J.! 1999.! The! Miracle! Tree:! Moringa!
Church!World! Service,! Dakar.! 68! pp.! The!
in! Nicaragua.! ECHO! Development! Notes!
Gassenschmidt,! U.! KD,! Jany,! B.! Tauscher,! and!
H.! Niebergall.! 1995.! Isolation! and!
characterization! of! a! flocculating! protein!
from! Moringa! oleifera.! Lam.! Biochimica!
Makonnen,! E.A.! and! Hunde,! G.! Damecha.!
1997.! Hypoglycaemic! effect! of! Moringa!
stenopetala! aqueous! extract! in! rabbits.!
Njoku.! O.U.! and! M.U.! Adikwu.! 1997.!
Investigation! on! some! physic2chemical!
Moringa! oleifera! seed! oil.! Acta!
el!mercado! de! frutas!exóticas.!Claridades!
Agropecuarias.! Revista! de! publicación!
V.! Spiliotis.! 1999.! Characterization! of!
Williams,! F.S.! and! Lakshminarayanan.! 1993.!
Effect! of! some! Indian! vegetables! on! the!
glucose! and! insulin! respose! in! diabetic!
subjects.! International! Journal! of! Food!


Validação Cientifica Depressão


The prevalence of mental depression has increased in recent years, and has become a serious health problem in most countries of the world, including India. Due to the high cost of antidepressant synthetic drugs and their accompanying side effects, the discovery of safer antidepressant herbal remedies is on the rise. Moringa oleifera (MO) (drumstick) has been used in traditional folk medicine, and in Ayurveda, it is considered as a valuable remedy for treating nervous system disorders as well as memory enhancing agent.


The present study was designed to evaluate the acute and chronic behavioral and antidepressant effects of alcoholic extracts of MO leaves in standardized mouse models of depression.

Materials and Methods:

Alcoholic extracts of MO (MOE) leaves were prepared, and phytoconstituents were determined using appropriate chemical analytical methods. Following preliminary dose-finding toxicity studies, the biological activity of MOE was tested in Swiss albino mice. Animals were divided into six groups: Groups 1 and 2 served as vehicle control and fluoxetine (20 mg/kg) standard control, respectively. Groups 3 and 4 served as treatment groups and were orally administered ethanolic MOE at doses of 100 mg/kg and 200 mg/kg, respectively. Groups 5 and 6, respectively, received combination doses of MOE 100 mg/kg 10 mg fluoxetine, and MOE 200 mg/kg 10 mg/kg fluoxetine. Following acute and 14 days chronic treatments, all animals were tested using behavioral models of depression, such as forced swim test (FST), tail suspension test (TST), and locomotor activity test (LAT).


Significant changes in all tested activities (FST, TST, LAT) of chronically dosed mice were observed, especially in animals given simultaneously combined doses of 200 mg/kg/day MOE 10 mg/kg/day fluoxetine for 14 days. The antidepressant effect of MOE may have been invoked through the noradrenergic-serotonergic neurotransmission pathway, which is the hallmark of selective serotonin reuptake inhibitors (SSRI) class of drugs.


The results obtained in this study suggest that combined administration of MOE with low doses of fluoxetine or other SSRI drugs seems to have promising potential.

Keywords: Fluoxetine, forced swim test in mice, locomotor activity, Moringa oleifera, tail suspension test


Depression has become a wide spread mental disorder worldwide. According to global depression statistics, it is estimated that about 121 million people suffer from mental disorders. Currently, 12.3% of world population suffer from depression, and it is predicted that by 2020, the number may rise to 15%.[] Ravindran and da Silva[] have reported that about 7% of the Indian population suffers from mood and anxiety disorders.

A constant state of depression results from continuous stress or central nervous system (CNS) neurochemical imbalance.[] Oxidative stress (OS) is considered to be a major factor in the causation of anxiety and depression, and these CNS disorders appear to result from the imbalance in oxidation-reduction reactions (redox-state). It is characterized by the reduced ability of the antioxidant defense mechanism of the CNS to efficiently remove the excess of oxygen-derived free radicals, which are known to produce detrimental effects in the CNS. A growing body of evidence suggests that OS causes imbalance between the production of oxygen-derived free radicals and the antioxidant ability of neuronal cells and tissues, consequently contributing to the neuropathology and psychiatric diseases, including mild and major depression.[]

The antipsychotic drugs available for treating depression include tricyclic antidepressants, selective monoamine oxidase inhibitors, selective serotonin reuptake inhibitors (SSRI), and specific serotonin-noradrenaline reuptake inhibitors. Although most of these medications are safe and efficacious, yet in some patients, prolonged usage may cause a variety of minor side effects such as dry mouth, mydriasis, constipation, sleepiness, fatigue, restlessness, and headaches.[] In some patients, prolonged therapy with fluoxetine may induce serious side effects, such as suicidal tendencies. Thus, the alternative therapies are needed which could be efficacious but produce lesser side effects.

Fluoxetine (prozac, sarafem) belongs to the SSRI class of antipsychotic drugs. It is recommended for the treatment of major depressive disorders in both children and adults, bulimia nervosa, and panic disorder as well as premenstrual dysphoric disorder. In adult humans, an initial oral daily dose of fluoxetine is 20 mg, and in some patients, maximum daily dose may be escalated to 80 mg after several weeks if sufficient clinical improvement does not occur.

The new approach for the treatment of depression with plant-derived remedies may prove to more economical in developing countries. Many plant products are used for the treatment of depression, like Hypericum perforatum Linn., Areca catechu Linn., Bacopa monnieriCentella asiaticaGinkgo biloba, etc.[] Some herbal drugs as well as nutraceuticals containing flavonoids and polyphenolic compounds have proven to be similar in efficacy to that of synthetic antidepressants. The most common example is St. John Wort (H. perforatum) that is used for treating minor and mild depression. A limited number of clinical trials have shown that St. John Wort has antidepressant activity similar to SSRI drugs like fluoxetine and paroxetine.[] However, St. John's Wort is a well-known inducer of drug metabolizing enzymes (cytochrome P-450) and drug transporters (P-glycoprotein) in the gastrointestinal tract and modifies the disposition and pharmacokinetics of orally administered drugs.[,]

The present studies were designed to assess the antidepressant activity of Moringa oleifera (MO) in the mouse model. MO is commonly known as drumstick and belongs to the family Moringacae. In India, it is used as food and for medicinal purposes. It is widely grown in different parts of the world. MO possesses antioxidant, antidiabetic, antibacterial, antifungal, anti-inflammatory, antiulcer, and cholesterol lowering properties. Chemical analyses show that MO contains Vitamins A, B, C, flavonoids, oleic, palmitic and stearic acid, saponins, glycoside, gum, protein, calcium, magnesium, potassium, and iron.[,] The leaves have shown to possess strong antioxidant and anti-inflammatory properties, and thus could be used in the treatment of depression caused by OS or inflammation.[]

This investigation was done in mice dosed with ethanolic extract of MO (MOE) either alone or in combination with fluoxetine in various experiments of depression, and MO-induced effects were compared with reference antidepressant drug, fluoxetine.


Preparation of plant extract

Leaves of MO were purchased from a local market in Mumbai. They were identified and authenticated by the Department of Life Sciences, Ramanarain Ruia College, Mumbai. The voucher specimen was deposited at their herbarium. The dried leaves were powdered, and their different physicochemical parameters such as extractive values, ash values, foreign organic matter, and loss on drying were recorded. Detailed macroscopic and microscopic studies were conducted by standard procedures according to the Indian Pharmacopoeia 2010. Following crude characterization, the leaves were defatted using petroleum ether. The defatted leaves were then placed for extraction by heating at 65–70°C and refluxed with 95% ethanol for 6–12 h. The mixture was filtered by suction filtration, and the filtrate was concentrated by rotary evaporator. The yield of extraction was about 12% (w/w).

Animal husbandry of experimental animals

All studies were conducted after obtaining prior approval from the institutional animal ethical committee (Approval no: CPCSEA/SPTM/P-09/2012). Swiss albino mice of either sex (25–30 g) were used in all experiments. Mice were purchased from Bharat serums and vaccines limited, Thane, Maharashtra. Animals were housed and maintained in the Animal House of School of Pharmacy and Technology, NMIMS (temperature 25°C ± 2°C; relative humidity 75% ±5%). During the experiments, animals were provided with standard feed and drinking water ad libitum in polycarbonate feeder bottles with a stainless steel nipple.

Acute toxicity study

The dose-finding acute toxicity study of ethanolic MOE was carried out in mice using the OECD Guidelines 423.[] Mice were randomly divided into different treatment groups with three animals in each group. The extract was orally administered at a dose of 2000 mg/kg/day and distilled water as vehicle. A 2% w/v solution of the extract was prepared in distilled water with 1% w/v sodium carboxymethyl cellulose. The prepared MO formulation was administered orally by gavage in a dosing volume of 1 ml. The control group received distilled water in a dosing volume of 1 ml. Following the administration of once daily single dose of MO, the overt general behavior of mice was continuously monitored for 1 h after dosing, and then periodically during the first 24 h with special attention given during the first 4 h, and daily thereafter, for a total of 14 days. Changes in normal activity of mice and their body weights were monitored and the time at which signs of toxicity or death appeared was recorded.

Drugs and preparations

Fluoxetine was used as a standard drug while MO ethanolic extract was used as a test agent. A 2% w/v solution of the standard drug fluoxetine as well as the ethanolic MOE was prepared by dissolving them in 1.0% w/v sodium carboxymethyl cellulose just before administration. These solutions were administered orally by gavage in a dosing volume not exceeding 1 ml in both cases.

Treatment plan for acute dosing

The groups assigned for acute dose study were as follows:

Group 1: Control group (distilled water)

Group 2: Fluoxetine alone (20 mg/kg)

Group 3: MOE-1 (100 mg/kg)

Group 4: MOE-2 (200 mg/kg)

Group 5: MOE-1 (100 mg/kg) fluoxetine (10 mg/kg)

Group 6: MOE-2 (200 mg/kg) fluoxetine (10 mg/kg)

In the acute treatment study, a single dose was administered 30 min prior to testing. For the chronic treatment study, a single dose was administered daily for 14 days. In groups receiving the combination of standard drug and extract, the respective doses were administered concomitantly. In the chronic dose study, the behaviors of all groups were assessed for antidepressant activity 30 min after the last treatment dose on the 14th day. Different standardized depression models were used for behavioral tests to evaluate the antidepressant activity, such as forced swim test (FST), tail suspension test (TST), and locomotor activity test.

Forced swim test

FST was carried out according to the method described by Porsolt et al.[]

Tail suspension test

TST was carried out according to the method described by Porsolt et al. with slight modifications.[,]

Locomotor activity test

LAT was performed to assess CNS inhibitory or stimulatory activity of the extract.[]

Statistical analysis

The differences between experimental and control groups were determined using the Graph Pad INSTAT 3.0 (Graphpad Software Inc.) software for windows. Comparisons among different groups were performed by analysis of variance test. Statistically significant differences between control and experimental groups were assessed by Student's t-test. All data are expressed as mean ± standard error of mean. P < 0.05 was considered to be significant.


In acute toxicity studies, 2000 mg/kg dose of MO did not cause any mortality, or overt clinical signs of toxicity observed over 14 days period. Thus, 2000 mg/kg dose was considered as a safe dose of MOE in mice.

Acute study

Forced swim test

The results indicated that after 30 min MOE administration, there was no significant decrease in the immobility time, but both fluoxetine and test substance treated animals showed slight reductions in immobility time compared to the vehicle controls [Figure 1].

An external file that holds a picture, illustration, etc.
Object name is JAIM-6-273-g001.jpg

Effect of Moringa oleifera extract on duration of immobility forced swim test. Gr 1: Normal Control, Gr 2: Standard Fluoxetine (20 mg/kg), Gr 3: MOE-1 (100 mg/kg), Gr 4: MOE-2 (200 mg/kg), Gr 5: MOE-1 (100 mg/kg) fluoxetine (10 mg/kg), Gr 6: MOE-2 (200 mg/kg) fluoxetine (10 mg/kg). Results are represented as mean ± standard error of mean significantly different at *P < 0.05 and **P < 0.01 compared to vehicle control

Tail suspension test

No decrease in the immobility time was observed after administering 100 mg/kg MOE, whereas the immobility time was markedly shortened (180 ± 13.3 min vs. 277 ± 2.5 min, P < 0.05) in 200 mg/kg MOE treated animals. Significant reductions in the immobility time, ranging from 35% to 46% (P < 0.05) were also noted in Groups 2 and 6 in comparison with the vehicle control [Figure 2].

An external file that holds a picture, illustration, etc.
Object name is JAIM-6-273-g002.jpg

Effect of Moringa oleifera extract on duration of immobility in tail suspension test. Gr 1: Normal Control, Gr 2: Standard Fluoxetine (20 mg/kg), Gr 3: MOE-1 (100 mg/kg), Gr 4: MOE-2 (200 mg/kg), Gr 5: MOE-1 (100 mg/kg) fluoxetine (10 mg/kg), Gr 6: MOE-2 (200 mg/kg) fluoxetine (10 mg/kg). Results are represented as mean ± standard error of mean significantly different at *P < 0.05 and **P < 0.01 compared to vehicle control

Locomotor activity test

In order to assess the antidepressant activity of the extract, the locomotor activity of mice was recorded using actophotometer.

Locomotor activity of treated and untreated mice was assessed from their locomotor behavior, and the results obtained were compared with the vehicle controls. Statistically significant increase in locomotor activities (ranging from 28% to 30%, P < 0.05) was found in animals dosed with 200 mg/kg MOE, fluoxetine alone (20 mg/kg), and those administered combination of 200 mg/kg MOE 10 mg/kg fluoxetine [Figure 3].

An external file that holds a picture, illustration, etc.
Object name is JAIM-6-273-g003.jpg

Effect of Moringa oleifera extract on run score in locomotor activity. Gr 1: Normal Control, Gr 2: Standard Fluoxetine (20 mg/kg), Gr 3: MOE-1 (100 mg/kg), Gr 4: MOE-2 (200 mg/kg), Gr 5: MOE-1 (100 mg/kg) fluoxetine (10 mg/kg), Gr 6: MOE-2 (200 mg/kg) fluoxetine (10 mg/kg). Results are represented as mean ± standard error of mean significantly different at *P < 0.05 and **P < 0.01 compared to vehicle control

Chronic study findings

Forced swim test

In the subacute/chronic investigation, the animals were treated either with MOE alone or in combination with fluoxetine for 14 consecutive days. Results summarized in Figure 4 show that oral administration of ethanolic MOE at both dose levels and in combinations with fluoxetine caused reductions in FST immobility time in mice. Standard fluoxetine dose of 20 mg/kg displayed a significant decrease in the immobility time. The group treated with the combination of 200 mg/kg MOE 10 mg/kg fluoxetine dose exhibited a 30% decrease in the immobility time compared to the vehicle control.

An external file that holds a picture, illustration, etc.
Object name is JAIM-6-273-g004.jpg

Effect of chronic administration of Moringa oleifera extract on duration of immobility in forced swim test. Gr 1: Normal Control, Gr 2: Standard Fluoxetine (20 mg/kg), Gr 3: MOE-1 (100 mg/kg), Gr 4: MOE-2 (200 mg/kg), Gr 5: MOE-1 (100 mg/kg) fluoxetine (10 mg/kg), Gr 6: MOE-2 (200 mg/kg) fluoxetine (10 mg/kg). Results are represented as mean ± standard error of mean significantly different at *P < 0.05 and **P< 0.01 compared to vehicle control

Tail suspension test

Results of the 14 days chronic study revealed that there was an inverse relationship between the dose of the extract and the immobility time, that is, an increase in the MOE dose produced a corresponding reduction in the immobility time in comparison with the control group [Figure 5]. In addition, repeated administration of standard fluoxetine (20 mg/kg/day) showed a profound decrease (100 ± 6.6 min vs. 255 ± 7.6 min, P < 0.01) in the mean immobility period. Similarly, the average immobility time in mice treated with the MOE either alone (200 mg/kg/day) or the combined administration of MOE (200 mg/kg/day) and fluoxetine (10 mg/kg/day) was significantly shortened (P < 0.001) as opposed to vehicle control. The respective groups (Groups 4 and 6) showed approximately 41% and 57% decrease in the immobility period compared to the control.

An external file that holds a picture, illustration, etc.
Object name is JAIM-6-273-g005.jpg

Effect of chronic administration of Moringa oleifera extract on duration of immobility in tail suspension test. Gr 1: Normal Control, Gr 2: Standard Fluoxetine (20 mg/kg), Gr 3: MOE-1 (100 mg/kg), Gr 4: MOE-2 (200 mg/kg), Gr 5: MOE-1 (100 mg/kg) fluoxetine (10 mg/kg), Gr 6: MOE-2 (200 mg/kg) fluoxetine (10 mg/kg). Results are represented as mean ± standard error of mean significantly different at *P < 0.05 and **P< 0.01 compared to vehicle control

Overall, 14 days repeated administration of MOE showed a significant decrease in the immobility activity in both FST and TST animal models. The combination dosing of MOE (200 mg/kg/day) and fluoxetine (10 mg/mg/day) resulted in producing more profound (P < 0.01) actions leading to approximately 57% reduction in the immobility time compared to the vehicle control. It appears that in both FST and TST mouse models, the combined administration of MOE and fluoxetine had produced an additive effect on these parameters, but the underlying mechanism of action remains unknown.

Locomotor activity test

Repeated administration of the MOE resulted in enhanced locomotor activity in mice. More prominent effects were seen in groups treated with the combination of MOE at the dose of 200 mg/kg/day and fluoxetine (10 mg/kg/day). As mentioned earlier, these treatment groups exhibited nearly 37% and 41% increase in the locomotor activity compared to the vehicle control. Results are summarized in Figure 6.

An external file that holds a picture, illustration, etc.
Object name is JAIM-6-273-g006.jpg

Effect of chronic administration of Moringa oleifera extract on the run score in locomotor activity. Gr 1: Normal Control, Gr 2: Standard Fluoxetine (20 mg/kg), Gr 3: MOE-1 (100 mg/kg), Gr 4: MOE-2 (200 mg/kg), Gr 5: MOE-1 (100 mg/kg) fluoxetine (10 mg/kg), Gr 6: MOE-2 (200 mg/kg) fluoxetine (10 mg/kg). Results are represented as mean ± standard error of mean significantly different at *P < 0.05 and **P < 0.01 compared to vehicle control


The present study was designed to investigate the antidepressant activity of ethanolic MOE in mice using well-tried-out and standardized behavioral tests of depression. MO is often used as antidiabetic, anti-inflammatory, antimicrobial, and antiulcer remedy.[] However, its neuropharmacological activity invoking antidepressant-like action is unknown. It is reported that MO has a strong antioxidant and anti-inflammatory activity,[] thereby suggesting that it could be useful in treating depression caused by OS or inflammation-induced due the neurochemical imbalance in the brain.[] The antidepressant potential of MOE was assessed in mice exposed to FST, TST, and locomotor activity. The study was divided into two parts, namely acute dose study and subacute or chronic dose study when the animals were repeatedly dosed orally for 14 consecutive days. The purpose was to know the toxicological effects, if any, and antidepressant effects of MO when given as a single dose and when administered in repeated dosing. Combination effects of MO were also assessed with standard antidepressant drug fluoxetine. The rationale of evaluating the combined dosing is, whether or not the antidepressant dose of fluoxetine may be reduced to circumvent its minor and major side effects experienced by patients.

MO contains many constituents such as flavonoids and phenols, which are vital antioxidants.[] The polyphenolic compounds are purported to exert neuroprotective and anti-inflammatory effects in the CNS.[] The significant reduction in the immobility time observed in the FST following the acute [Figure 1] and chronic [Figure 4] co-administration of 10 mg/kg fluoxetine 200 mg/kg MOE suggests the additive interaction of fluoxetine with MOE, and consequently enhancing the antidepressant action of MOE. The potential additive interaction may be through the noradreno-serotonergic pathway as is known for SSRI class of drugs.[]

There was a significant reduction in the immobility time in the TST groups administered 200 mg/kg/day MOE alone and its combination with 10 mg fluoxetine for 14 days [Figure 5]. The combination produced a more pronounced effect than MOE alone, thereby suggesting an additive interaction between these agents.

This phenomenon also suggested the involvement of noradrenergic and serotonergic pathways in the induction of antidepressant activity.[]

In order to assess the occurrence of false positive results exhibited in the TST and FST due to CNS stimulant action of MOE, mice were subjected to open field tests.[] A significant increase in the locomotor activity was noticed in MOE treated animals as compared to the vehicle controls. Similarly, the locomotor activity was also markedly enhanced in animals dosed with a combination of MOE and fluoxetine. The findings suggested a nonspecific antidepressant action of the MOE.[] These observations implied that the dynamics of the locomotors activity may be due to involvement of CNS stimulatory action.

The preliminary pharmacological screening with acute dosing exhibited the antidepressant activity of MOE, but its antidepressant activity was more enhanced after repeated dosing. In comparison with the acute studies, chronic dose studies displayed a significant antidepressant manifestation in the behavioral patterns when compared to the vehicle controls. This effect was far more significantly pronounced in animals treated with MOE alone at a dose of 200 mg/kg/day as well as in combination with 10 mg/kg/day dose of fluoxetine.

Several investigations suggest that some minor and major depressive disorders can be ameliorated with flavonoids.[] It has been reported that flavonoids act through their antioxidant mechanism as well as through neurogenesis.[] Many mental disorders such as Alzheimers disease,[] epilepsy,[] schizophrenia,[] and depressions[] are also related to impaired neurogenesis. Antioxidants and flavonoids assist in the scavenging of free radicals and counteract the deleterious interaction of free radicals with cell membranes and DNA.[,] It is noteworthy that a high level of saponin content in MO may aid in the antidepressant effect.[] The radical-scavenging ability of MO-derived antioxidants and polyphenolic compounds too may be responsible for its neuroprotective and anti-inflammatory activity.[]

MO-derived ingredients have been reported to possess anti-inflammatory activity. These ingredients may contribute to the antidepressant activity of MO owing to reduction of stress mediated through the inflammatory pathway.[] However, the neuroprotective and anti-inflammatory potential of MO-derived antioxidants and flavonoids remains to be verified.


The results of the present investigation showed the antidepressant activity of ethanolic MOE in mice. The highest activity was observed when 200 mg/kg doses of MOE were administered in combination with 10 mg/kg of fluoxetine, suggesting an additive interaction between these two agents. However, the possibility of additive interactive mechanism remains to be elucidated. The plausible mechanism of action of MO appears to be partially due to the reduction in CNS OS accompanied by its influence on noradrenergic and serotonergic neurotransmission pathways. There could also be an involvement of the SSRI mechanism as is seen in SSRI class of drugs. The combined administration of MOE with low doses of fluoxetine and other SSRI psychotropic drugs seems to have a promising potential for the development of alternative therapies for treating depression.

Financial support and sponsorship


Conflicts of interest

There are no conflicts of interest.


1. Pedersen ME, Szewczyk B, Stachowicz K, Wieronska J, Andersen J, Stafford GI, et al. Effects of South African traditional medicine in animal models for depression. J Ethnopharmacol. 2008;119:542–8.[PubMed]
2. Ravindran AV, da Silva TL. Complementary and alternative therapies as add-on to pharmacotherapy for mood and anxiety disorders: A systematic review. J Affect Disord. 2013;150:707–19. [PubMed]
3. Umadevi P, Murugan S, Jennifer S. Evaluation of antidepressant like activity of Cucurbita pepo seed extracts in rats. Int J Curr Pharm Res. 2011;3:108–13.
4. Yadav R, Kaushik R. A study of phytochemical constituents and pharmacological actions of Trigonella foenum-graecum: A review. Int J Pharm Technol. 2011;3:1022–8.
5. Rojas P, Serrano-García N, Medina-Campos ON, Pedraza-Chaverri J, Ogren SO, Rojas C. Antidepressant-like effect of a Ginkgo biloba extract (EGb761) in the mouse forced swimming test: Role of oxidative stress. Neurochem Int. 2011;59:628–36. [PubMed]
6. Jawai T, Gupta R, Siddiquie Z. A review on herbal plants showing antidepressant activity. Int J Pharm Sci Res. 2011;2:3051–60.
7. Zanoli P. Role of hyperforin in the pharmacological activities of St.John's wort. CNS Drug Rev. 2004;10:203–18. [PubMed]
8. Zhou S, Chan E, Pan SQ, Huang M, Lee EJ. Pharmacokinetic interactions of drugs with St John's wort. J Psychopharmacol. 2004;18:262–76. [PubMed]
9. Komoroski BJ, Zhang S, Cai H, Hutzler JM, Frye R, Tracy TS, et al. Induction and inhibition of cytochromes P450 by the St.John's wort constituent hyperforin in human hepatocyte cultures. Drug Metab Dispos. 2004;32:512–8. [PubMed]
10. Leelavinothan P, Magdalena K. Antioxidant activity of the crude extracts of Moringa oleifera and Scoparia dulcis L. leaves. Pol J Food Nutr Sci. 2007;57:203–8.
11. Bhoomika R, Babita G, Goyal R. Phyto-pharmacology of Moringa Oleifera Lam an overview. Nat Prod Radiance. 2007;6:347–53.
12. Porsolt RD, Bertin A, Jalfre M. Behavioral despair in mice: A primary screening test for antidepressants. Arch Int Pharmacodyn Ther. 1977;229:327–36. [PubMed]
13. Cryan JF, Mombereau C, Vassout A. The tail suspension test as a model for assessing antidepressant activity: Review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev. 2005;29:571–625. [PubMed]
14. Bhattacharya SK, Bhattacharya A, Sairam K, Ghosal S. Anxiolytic-antidepressant activity of Withania somnifera glycowithanolides: An experimental study. Phytomedicine. 2000;7:463–9. [PubMed]
15. Mann JJ. The medical management of depression. N Engl J Med. 2005;353:1819–34. [PubMed]
16. Kurmi R, Ganeshpurkar A, Bansal D, Agnihotri A, Dubey N. Ethanol extract of Moringa olieferaprevents in vitro glucose induced cataract on isolated goat eye lens. Indian J Ophthalmol. 2014;62:154–7.[PMC free article] [PubMed]
17. Brunello N, Mendlewicz J, Kasper S, Leonard B, Montgomery S, Nelson J, et al. The role of noradrenaline and selective noradrenaline reuptake inhibition in depression. Eur Neuropsychopharmacol. 2002;12:461–75. [PubMed]
18. Jaiswal D, Kumar Rai P, Kumar A, Mehta S, Watal G. Effect of Moringa oleifera Lam. leaves aqueous extract therapy on hyperglycemic rats. J Ethnopharmacol. 2009;123:392–6. [PubMed]
19. Pemminati S, Gopalakrishna H, Shenoy A, Sahu S, Mishra S, Meti V, et al. Antidepressant activity of aqueous extract of fruits emblica offcinalis in mice. Int J Appl Biol Pharm Technol. 2012;1:449–54.
20. Huang QJ, Jiang H, Hao XL, Minor TR. Brain IL-1 beta was involved in reserpine-induced behavioral depression in rats. Acta Pharmacol Sin. 2004;25:293–6. [PubMed]
21. Parekar RR, Jadhav KS, Marathe PA, Rege NN. Effect of Saraswatarishta in animal models of behavior despair. J Ayurveda Integr Med. 2014;5:141–7. [PMC free article] [PubMed]
22. Priyanka B, Sridhar Y, Shankaraiah P. Antidepressant and muscle relaxant activity of Cardiospermum halicacabum Linn. Roots in mice. J Adv Pharm Sci. 2012;2:193–200.
23. Vauzour D, Vafeiadou K, Rodriguez-Mateos A, Rendeiro C, Spencer JP. The neuroprotective potential of flavonoids: A multiplicity of effects. Genes Nutr. 2008;3:115–26. [PMC free article] [PubMed]
24. Gutierrez-Merino C, Lopez-Sanchez C, Lagoa R, Samhan-Arias AK, Bueno C, Garcia-Martinez V. Neuroprotective actions of flavonoids. Curr Med Chem. 2011;18:1195–212. [PubMed]
25. Williams RJ, Spencer JP. Flavonoids, cognition, and dementia: Actions, mechanisms, and potential therapeutic utility for Alzheimer disease. Free Radic Biol Med. 2012;52:35–45. [PubMed]
26. Porter BE. Neurogenesis and epilepsy in the developing brain. Epilepsia. 2008;49 Suppl 5:50–4.[PMC free article] [PubMed]
27. Reif A, Schmitt A, Fritzen S, Lesch KP. Neurogenesis and schizophrenia: Dividing neurons in a divided mind? Eur Arch Psychiatry Clin Neurosci. 2007;257:290–9. [PubMed]
28. Elder GA, De Gasperi R, Gama Sosa MA. Research update: Neurogenesis in adult brain and neuropsychiatric disorders. Mt Sinai J Med. 2006;73:931–40. [PubMed]
29. Sharma V, Paliwal R. Isolation and characterization of saponins from Moringa oleifera pods. Int J Pharm Pharm Sci. 2013;5:179–83.
30. Sreelatha S, Padma PR. Antioxidant activity and total phenolic content of Moringa oleifera leaves in two stages of maturity. Plant Foods Hum Nutr. 2009;64:303–11. [PubMed]
31. Catena-Dell’Osso M, Bellantuono C, Consoli G, Baroni S, Rotella F, Marazziti D. Inflammatory and neurodegenerative pathways in depression: A new avenue for antidepressant development? Curr Med Chem. 2011;18:245–55. [PubMed]

Articles from Journal of Ayurveda and Integrative Medicine are provided here courtesy of Elsevier

Validação Cientifica Saúde do Pele

Propriedades cicatrizantes da ferida da fração acetato de etila da Moringa oleifera em fibroblastos dérmicos humanos normais


Antecedentes / Objetivo:

As feridas são o resultado de lesões na pele que interrompem o tecido mole. A cicatrização de uma ferida é um processo complexo e prolongado de reparo e remodelação tecidual em resposta à lesão. Um grande número de plantas é usado pelas tradições folclóricas para o tratamento de cortes, feridas e queimaduras. Moringa oleifera (MO) é uma erva usada como medicamento popular tradicional para o tratamento de várias feridas na pele e doenças associadas. Os mecanismos subjacentes da atividade de cicatrização de feridas da fração acetato de etila do extrato de folhas MO são completamente desconhecidos.

Materiais e métodos:

No presente estudo, a fração de acetato de etila das folhas de MO foi investigada por sua eficácia na viabilidade celular, proliferação e migração (taxa de fechamento da ferida) em células normais de fibroblastos dérmicos humanos.


Os resultados revelaram que a concentração mais baixa (12,5 μ g / ml, 25 μ g / ml, e 50 μ g / ml) da fracção de acetato de etilo de folhas MO mostrou proliferativa e notável efeito migratório em fibroblastos dérmicos humanos normais.


Este estudo sugeriu que a fração de acetato de etila das folhas de MO pode ser um agente terapêutico potencial para a cicatrização de feridas cutâneas, promovendo a proliferação e migração de fibroblastos através do aumento da taxa de fechamento da ferida, corroborando seu uso tradicional.

PALAVRAS-CHAVE: Frações ativas, proliferação celular, migração, produtos naturais, ensaio de risco


A pele desempenha um papel crucial no sustento da vida, agindo como uma barreira para agentes nocivos externos. Quando esta barreira é interrompida, a pele pode não ser capaz de desempenhar adequadamente sua função crucial; Portanto, é vital restaurar imediatamente sua integridade. Uma cicatrização normal de feridas requer uma série de processos dinâmicos e sobrepostos. Uma pele traumatizada, expõe o tecido subjacente ao ambiente externo, fornece um acesso aberto à infecção e freqüentemente resulta no desenvolvimento de exsudatos e toxinas desagradáveis, o que está associado à morte concomitante de células em regeneração [  , ]. Assim, a interação entre os componentes celulares e extracelulares é necessária para restaurar a integridade do tecido. A modulação de diversos fatores de crescimento no reparo tecidual influencia a proliferação celular, migração e outras atividades metabólicas celulares da pele. O culminar destes processos biológicos resulta na substituição de estruturas normais da pele [  ]. Embora o processo de cura ocorra naturalmente, as feridas podem entrar em um estado de inflamação patológica devido a um processo de cura adiado, incompleto ou descoordenado, que exibe feridas agudas prejudicadas ou retardadas e feridas crônicas. Além do estado de saúde, especula-se que os fatores de idade, corpo construído, estado nutricional e estresse fisiológico sejam o resultado de uma cicatrização prejudicada [  -  ].

A cicatrização de feridas é categorizada em quatro estágios clássicos e são hemostasia, inflamação, fibroplasia e maturação [  ]. A hemostasia ocorre imediatamente após a lesão e sua forma de proteção ao sistema vascular e pontes que invadem as células necessárias para as seguintes fases de cicatrização. A agregação plaquetária e a formação de coágulos no evento da hemostasia recrutam fatores de crescimento e citocinas, como fatores de crescimento transformadores-β (TGF-β), fator de crescimento derivado de plaquetas (PDGF) e fator de crescimento endotelial vascular (VEGF). Essas moléculas atuam como promotores para acompanhar a fase inflamatória na cascata de cicatrização de feridas. Um influxo de células inflamatórias, incluindo neutrófilos, monócitos e macrófagos no arcabouço de fibrina [ ] enhances further tissue debridement and recruitment of additional growth factors vital for wound healing. Epithelialization, angiogenesis, granulation tissue formation, and collagen deposition, characterize the proliferative phase. The sequential events of epithelialization encompass cell detachment, proliferation migration, and differentiation, which are facilitated by TGF-β, VEGF, and multiple cytokines. Angiogenic response is critical as newly developed cell and tissue requires formation of new blood vessels to provide nutrients needed for homeostasis. The hypoxic condition allows proliferation of endothelial cells under influence of angiogenic factors. Fibroblasts multiply and increase collagen production to produce greater tensile strength about 80% of the original or uninjured tissue. Concurrently, cell and capillary density decrease in the final phase of wound healing which involves maturation or remodeling [ ].

A realização no desenvolvimento da nova informação de marcadores biológicos únicos ligados a respostas de cicatrização de feridas normais e patológicas auxilia na descoberta de um novo agente terapêutico natural para substituir as drogas dispendiosas existentes, tais como sulfadiazina de prata, vasolex e santil acompanhada por irritação da pele semelhante, erupções cutâneas discrasias e reações cutâneas com risco de vida [  ]. Muitas plantas medicinais têm um papel muito significativo no curso da cicatrização de feridas [  ]. A terapia baseada em plantas não apenas acelera o processo de cura, mas também mantém a estética de maneira natural [  ].

Atualmente, tem havido um interesse crescente em Moringa oleifera (MO) de pesquisadores biomédicos devido ao alto potencial e valor nutritivo. A árvore MO é nativa das regiões sub-Himalaias do noroeste da Índia e é cultivada em áreas tropicais e subtropicais do mundo, incluindo a Índia, o Paquistão, a Malásia e o Sri Lanka [  ]. Os atributos farmacológicos das folhas de MO consistem principalmente em glicosídeos, β-sitosterol, α-tocoferol, piridoxina, ácido ascórbico, lisina metionina e proteínas [  ]. Este composto demonstrou ser muito raro na natureza e exibiu atividades anti-hipertireoidismo, antitumoral, antiespasmódico, antioxidante, hepatoprotetor e antimicrobiano [  - ]. O presente trabalho teve como objetivo investigar o potencial de cicatrização in vitro da fração acetato de etila das folhas de MO em células normais de fibroblastos dérmicos humanos (HDF-N) e estas atividades foram comparadas com a droga controle positiva Alantoína. A alantoína possui inúmeras atividades terapêuticas, incluindo cicatrização de feridas, remoção de tecido necrótico e promotor de estimulação epitelial e tem sido usada em preparações farmacêuticas por mais de 70 anos [  ]. Além de neutrófilos, células endoteliais e queratinócitos, os fibroblastos desempenham um papel importante na reparação e remodelação de feridas cutâneas. Eles proliferam para se expandirem, migram para o leito da ferida e sintetizam nova matriz extracelular [ ]. A compreensão dos mecanismos que regulam a proliferação celular e a migração de células de fibroblastos por compostos bioativos pode ser favorável no desenvolvimento de novas terapias para melhorar o processo de cicatrização de feridas.


Coleta de Plantas, Preparação de Extratos e Isolamento de Fração de Acetato de Etilo

As folhas de MO foram coletadas do Jardim No.2 na Universiti Putra Malaysia (UPM), na Malásia, com o espécime do comprovante (SK 1561/08) e depositadas na unidade do Herbário IBS. As folhas em pó foram retiradas e extraídas com etanol a 90%, utilizando técnica de maceração em temperatura ambiente. O filtrado foi coletado e deixado secar através de evaporador rotativo a 25 ° C (Virtis Bench Top K, Estados Unidos. Além disso, usando a técnica de partição solvente-solvente, a fração acetato de etila (EtOAc) foi isolada do extrato bruto das folhas, e armazenado a -20 ° C até uso posterior.

Estudo de cicatrização de feridas in vitro

Manutenção de cultura celular

As células HDF-N foram adquiridas à American Type Culture Collection (ATCC, Manassas, VA, EUA, CRL-2301) e descongeladas e mantidas de acordo com o protocolo ATCC. As células foram cultivadas em Dulbecco Modified Eagle Médium (DMEM) pré-misturada com 5% de soro fetal bovino, suplementos de crescimento, e antibióticos que consiste em L-glutamina 15 mmol / l, estreptomicina 100 μ g / mL, e penicilina 100 U / ml e foram incubadas em 5% de CO 2 e 37 ° C. As passagens celulares entre 12 e 15 a 70-80% de confluência foram utilizadas para sementeira e tratamento ao longo da experiência.

Ensaios de Brometo de 3- (4,5-dimetiltiazol-2-il) -2,5-difenil-tetrazio [MTT])

HDF-N números de células de passagem entre 12 a 15, foram semeadas em placas de 96 poços a uma densidade de 1 x 10 5 (em 100 μ L DMEM) por poço e crescidas durante 24 h. O meio foi substituído com diluições em série de EtOAc MO folhas concentração de 15,62, 31,25, 62,5, 125, 250 e 500 μ g / ml e as placas foram incubadas durante 24 h. 10 μ l de 5 mg de reagente / ml de MTT foi, depois, adicionado a cada um dos poços e incubadas durante mais 4 h. O formazan roxo formado foi solubilizado pela adição de 100 µL dimetil sulfóxido para todos os poços incluindo controlo (sem qualquer tratamento), depois rodou suavemente para misturar bem e este foi então mantido no local escuro à temperatura ambiente durante cerca de 30 min. Utilizou-se leitor de microplacas para ler a absorvcia a 570 nm com refercia de 630 nm. Gráfico de absorvância contra o número de células foi plotado para determinar a viabilidade das células HDF-N, de acordo com os métodos padrão [  ]. Os experimentos foram realizados em triplicata e os dados foram registrados e analisados ​​estatisticamente usando o SPSS.

Ensaio de Proliferação Celular

Células HDF-N foram semeadas em placas de 96 poços a uma densidade de 1 x 10 5 (em 100 μ L meio) por poço e incubou-se a 37 ° C até à confluência e o meio foi substituído com diluições em série de folhas de EtOAc MO (15,62, 31,25, 62,5, 125, 250 e 500 μ g / ml) e incubou-se durante 24 h. 10 µL do kit de contagem de células-8 (CCK-8) foi então adicionado a cada um dos poços e incubado por mais 4 h de acordo com as instruções do fabricante (Dojindo Lab, Japão). Utilizou-se leitor de microplacas para ler a absorvcia a 450 nm com refercia de 630 nm. O gráfico da absorvância contra o número de células foi traçado para determinar a proliferação de células HDF de acordo com as instruções do fabricante do kit. Os experimentos foram realizados em triplicata e os dados foram registrados e analisados ​​estatisticamente usando o SPSS.

Ensaio de risco de feridas

A migração de HDF-N foi examinada usando o método de ensaio de risco [  ]. HDF-N (2 x 10 5 culas) foram inoculadas em cada poço de uma placa de 24 cavidades e incubadas com meio completo a 37 ° C e 5% de CO 2 . Após 24 h de incubação, as células foram tratadas com EtOAc fracção de MO folhas com várias concentrações (12,5 μ g / ml, 25 μ g / ml e 50 μg / mL). As células confluentes foram desmanteladas horizontalmente com pontas de pipeta P200. O meio foi substituído por meio fresco e o fechamento da ferida foi monitorado e fotografado por microscopia de contraste de fase usando aumento de 4 × a 0 h. Após 24 h de incubação, o segundo conjunto de imagens foi fotografado. Para determinar a taxa de migração, as imagens foram analisadas usando o software image-j e a porcentagem da área fechada foi medida e comparada com o valor obtido antes do tratamento. Um aumento do percentual de área fechada indicou a migração de células. Os experimentos foram realizados em triplicata e os dados foram registrados e analisados ​​estatisticamente usando o SPSS.

Análise Estatística

Os dados são apresentados como a média ± desvio padrão (DP) e análises estatísticas foram realizadas usando o software SPSS one-way ANOVA (ANOVA) versão 21.0 (SPSS, EUA). Os resultados foram obtidos no final do experimento e comparados com os grupos controle e tratado, utilizando o teste t de Student . As diferenças foram consideradas como estatisticamente significativas a * P <0,05, ** P <0,01, ### P <0,001 versus grupo controle.


Efeito do MO na viabilidade celular

O efeito citotóxico da fracção MO EtOAc foi determinada pelo ensaio MTT em células HDF-N tratadas com diferentes concentrações de gradiente (15,62, 31,25, 62,5, 125, 250, e 500 μ concentração g / mL). O escrutínio da viabilidade celular mostrou que a fração acetato de etila não apresentou efeito tóxico nas células HDF-N, mesmo em concentrações mais altas [ Figura 1 ]. Ao aumentar a concentração de fracção, as viabilidades celulares não foram significativamente diferentes em percentagem, por conseguinte, temos seleccionada uma concentração mais baixa (12,5, 25 e 50 μ g / ml) da fracção de acetato de etilo para estudos posteriores de cura de feridas.

Um arquivo externo que contém uma figura, ilustração, etc. O nome do objeto é JIE-5-1-g001.jpg

Efeitos da citotoxicidade do tratamento da fração EtOAc da moringa oleifera (MO) em fibroblastos dérmicos humanos - células normais. Às 24 h de tratamento, os efeitos da fração de acetato de etila MO contra a viabilidade de células tratadas foram avaliados através da atividade mitocondrial usando o teste de MTT e calculados comparando os valores do grupo de tratamento da fração acetato de etila com o grupo controle. Os valores são apresentados como a porcentagem média ± desvio padrão ( n = 3) de três experimentos individuais.

Efeito da M. oleifera na proliferação celular

A proliferação celular, tal como representado na Figura 2 demonstram aumento significativo da taxa de proliferação celular em células HDF-N, por tratamento com fracção MO EtOAc usando concentrações até 62,5 μ g / ml. No entanto, a concentração de 125 μ g / ml e de maior fracção MO EtOAc reduziu a taxa proliferativa células HDF-N. Por conseguinte, as investigações proliferativas, a concentração em 12,5 μ g / ml, 25 μ g / ml e 50 μ g / ml foram escolhidos para experiências adicionais de cura de feridas.

Um arquivo externo que contém uma figura, ilustração, etc. O nome do objeto é JIE-5-1-g002.jpg

O efeito do tratamento da fração EtOAc da Moringa oleifera (MO) sobre a taxa de proliferação de células normais de fibroblastos dérmicos humanos. O efeito de proliferação foi estimado pelo ensaio de contagem de células-8 e calculado pela comparação dos valores do grupo de tratamento da fracção de acetato de etilo de M. oleifera com o grupo de controlo. Os dados são expressos como média ± desvio padrão de três experimentos individuais. ** P <0,01, ### P <0,001 versus grupo controle

Efeito do MO na atividade de cicatrização de feridas

Com base na citotoxicidade e proliferação experimento, uma concentração optimizada (não tóxico) de fracção MO EtOAc foi avaliada em ensaio de zero [Figuras [Figures33 e and4]4 ], para determinar os seus efeitos sobre a disseminação e actividades de migração de células HDF-N . No entanto, existe uma ligeira migração de células no controlo, verificou-se que as células HDF-N tratadas com MO EtOAc migravam mais rapidamente após um período de incubação de 24 h. Os resultados revelaram que a administração da fração MO EtOAc criou uma diferença de ± 9% na taxa de fechamento da ferida entre o tratado e o controle positivo. Também foi notado que a mais baixa concentração de fracção (12,5 μ g / ml) proliferam e migram mais rapidamente do que a concentração mais elevada (50 μg / ml). Apesar do aumento da taxa de migração de células HDF-N a 50 μ g / ml, a morfologia em termos de tamanho e forma (fusiforme) foram alteradas, mostrando evidência de toxicidade.

Um arquivo externo que contém uma imagem, ilustração, etc. O nome do objeto é JIE-5-1-g003.jpg

Taxa de migração em porcentagem para fibroblastos dérmicos humanos normais após tratamento com fração EtOAc da Moringa oleifera (MO) por 24 h. A análise quantitativa da taxa de migração foi analisada com o uso do software Image-J em fibroblastos dérmicos humanos normais tratados com fração de acetato de etila. Os dados são expressos como média ± desvio padrão de três experimentos individuais. * P <0,05, ** P <0,01, ###P <0,001 versus grupo controle

Um arquivo externo que contém uma imagem, ilustração, etc. O nome do objeto é JIE-5-1-g004.jpg

Efeito da fração de Moringa oleifera (MO) EtOAc na taxa de migração (ensaio de arranhadura) em fibroblastos dérmicos humanos normais. A taxa de migração foi quantificada pelo software Image-J e os dados foram expressos como média ± desvio padrão de três experimentos individuais para o ensaio de migração (ensaio de arranhadura) (a) Controle, (b) fração MO EtOAc 12,5 µg / mL, (c ) Fracção MO EtOAc 25 µg / mL, (d) fracção MO EtOAc 50 µg / mL, (e) Alantoína


A cicatrização de feridas prejudicadas pode ocorrer em qualquer indivíduo, mas é mais frequente em pessoas idosas e doentes crônicas. Com o envelhecimento da população e o aumento dramático da prevalência de doenças crônicas, como câncer, diabetes e tratamento de feridas, certamente se tornará uma questão ainda mais notável para os sistemas de saúde [  ,  ]. A cicatrização retardada da ferida é significada com alteração nas propriedades físicas do colágeno, achatamento das junções dermo-epidérmicas, depleção nutricional e imunidade celular levando a alterações anormais nas citocinas pró-inflamatórias e antiinflamatórias [ ]. Várias evidências foram coletadas para mostrar o imenso potencial de plantas medicinais usadas em vários sistemas tradicionais. Certas plantas representam um sério risco de toxicidade do ponto de vista da saúde humana, como as cicas, por desprezarem sua rica fonte de alcalóides [  ]. Isso incentiva a equipe de saúde a encurtar o tempo necessário para a cicatrização e minimizar as conseqüências indesejáveis, como inflamação da pele, alergia, pois as plantas são mais potentes, porque promovem os mecanismos de reparo sem efeitos adversos. Esses esforços garantem que o paciente receba tratamento holístico para feridas e ofereça às feridas a melhor chance de cicatrizar [  ].

Os curandeiros tradicionais afirmam que as folhas do MO são usadas como antiviral, antiinflamatória e analgésica. Colateral disso, a descoberta de evidências científicas de compostos fitoquímicos de folhas de MO que consistem em vários constituintes clinicamente importantes, tais como 4 - [(4'-O-acetil-alfa-L-rhamnosloxi) benzil] isotiocianato, 4 - [(3 '-O-acetil-alfa-i-ramnosiloxi) benzil] isotiocianato e S-metil-N- {4 - [(alfa-I-ramnosiloxi) benzil]} tiocarbamato, que é um glicosídeo fenólico anti-inflamatório [  ]. Com este pano de fundo, o objetivo do presente estudo foi realizado para enfatizar o efeito da fração acetato de etila das folhas MO nas propriedades de cicatrização in vitro . O estudo submete claramente que a fração MO EtOAc na concentração de 12,5 e 25 µg / mL aumenta a proliferação e migração celular de HDF. A proliferação celular e a migração celular são dois eventos importantes necessários para a cicatrização de feridas e um evento essencial durante a reepitelização, de modo que os fibroblastos em proliferação no local da ferida garantem um suprimento adequado de células para migrar e cobrir a superfície da ferida [  ]. Ambos os critérios foram registados em in vitro os estudos de proliferação de células e ensaio de zero [Figuras [Figures22 - -4].4 ]. Além disso, o aumento da resposta com a concentração na migração de células de fibroblastos no ensaio de raspagem indica que a fração de EtOAc das folhas de MO mostrou-se potente na promoção da angiogênese [ Figura 3]. Entretanto, em concentrações mais altas, a fração EtOAc das folhas de MO confere uma forte atividade antiproliferativa, possivelmente devido ao forte acúmulo de compostos fenólicos que podem estar ligados à ativação de caspases e à indução de apoptose [  ].

Os resultados discutidos acima estabeleceram a base científica de uma alegação tradicional para o uso de folhas de MO como agente de cura de feridas. Na literatura, a importância clínica das folhas de MO, incluindo o efeito de cicatrização de feridas, ainda não foi totalmente estudada de maneira sistemática. Este estudo confirma que a frac�o de acetato de etilo das folhas de MO pode ter efeitos de cicatriza�o de feridas com base nos dados de ensaios in vitro em c�ulas de fibroblastos humanos normais ( Figura 5 ). Futuros estudos serão centrados na identificação e purificação do (s) componente (s) ativo (s) da fração EtOAc das folhas de MO respondendo aos mecanismos subjacentes de cicatrização de feridas para novos medicamentos custo-efetivos. Além disso, in vivo ainda faltam estudos de cicatrização de feridas para mostrar a atividade farmacológica da fração EtOAc no sistema de mamíferos para suportar o mecanismo específico emaranhado na regulação da atividade anti-inflamatória na cicatrização de feridas.

Um arquivo externo que contém uma figura, ilustração, etc. O nome do objeto é JIE-5-1-g005.jpg

O papel potencial da fração acetato de etila das folhas de Moringa oleifera no modelo de cicatrização in vitro


Este estudo demonstrou que a fração de EtOAc das folhas de MO foi eficaz na promoção e aceleração do processo de fechamento de feridas em células HDF-N. Este agente natural é um alvo rico para o desenvolvimento como agente terapêutico alternativo para a cicatrização de feridas, embora exista a necessidade de validação científica e avaliação de segurança antes que esta planta possa ser comercializada para tratamento de feridas alternativas.


Este trabalho de pesquisa foi apoiado por uma subvenção (Projeto n.º: GP-1/2014/9443700) do Centro de Gestão de Pesquisa, Universiti Putra Malaysia (UPM), Malásia.



Validação Cientifica Anti Microbriana

Atividade antimicrobiana

Uma série de investigações foi conduzida para avaliar a atividade antimicrobiana de espécies de Moringacom relatos de que os extratos de diferentes partes da planta M. oleifera - incluindo sementes, casca do caule, folhas e casca da raiz - podem exercer potencial antimicrobiano [  ,  ,  ,  ,  ,  ]. Por exemplo, a lectina solúvel em água isolada do extrato de sementes de M. oleifera tem efeitos inibitórios no crescimento, sobrevivência e permeabilidade celular de múltiplas espécies de bactérias patológicas [  ]. Além disso, o extrato de M. oleiferaraízes são relatados para conter um pterygospermin antibiótico ativo que tem efeitos antibacterianos e fungicidas poderosos [  ]. A aglicona de desoxi-niazimicina isolada da fração clorofórmica de um extrato etanólico da casca da raiz de M. oleifera é responsável por atividades antibacterianas e antifúngicas [  ], enquanto o suco da casca do caule apresenta efeito antibacteriano contra Staphylococcus aureus [  ]. Os extratos aquoso e etanólico das folhas de M. oleifera apresentam promissoras propriedades antibacterianas, com forte efeito inibitório sobre espécies Gram-positivas ( Staphylococcus aureus e Enterococcus faecalis) sobre as espécies Gram-negativas ( Escherichia coli , Salmonella , Pseudomonas aeruginosa , Vibrio parahaemolyticus e Aeromonas caviae ) [  ]. Além disso, o extrato etanólico de folhas de M. oleifera demonstrou a maior zona inibitória média contra o crescimento dos mutantes de S. aureus e Streptococcus durante a comparação entre o creme dental experimental contendo o extrato de diferentes partes da planta de M. oleifera e o enxaguatório bucal soluções [

Validação Cientifica Antiinflmátoria


A inflamação é uma resposta fisiológica para proteger o corpo contra infecções e restaurar a lesão tecidual [  ]. No entanto, a inflamação crônica a longo prazo pode levar ao desenvolvimento de doenças e distúrbios associados a inflamação crônica, como diabetes, câncer, doenças autoimunes, doenças cardiovasculares, sepse, colite e artrite [  ,  ]. As citocinas inflamatórias, como a interleucina-1 beta (IL-1β) e o fator de necrose tumoral alfa (TNF-α), podem regular a produção de óxido nítrico (NO) e prostaglandina E2 (PGE-2), estimulando a expressão ou aumentando a atividade de sintase de NO indutível (iNOS), ciclooxigenase-2 (COX-2) e PGE sintase microssomal-1 (mPGES-1) em células alvo [  ]. M. oleiferatem sido relatado não apenas diminuir a produção de TNF-α, IL-6 e IL-8 em resposta a macrófagos derivados de monócitos humanos (MDM) estimulados por lipopolissacarídeos (LPS) e extrato de fumaça de cigarro (CSE) inibem a expressão de RelA, um gene na sinalização do fator nuclear kappa B (NF-κB) p65 durante a inflamação [  ]. Além disso, em modelos de ratos com colite aguda induzida por ácido acético, a administração oral de extrato hidro-alcoólico de sementes de M. oleifera (MSHE) em três doses crescentes (50, 100 e 200 mg / kg) pode reduzir o peso do cólon distal como marcador. de inflamação e edema tecidual, gravidade da inflamação da úlcera e mucosa, dano à cripta, envolvimento de invasão, índice de colite total e atividade de mieloperoxidase (MPO) quando comparados com os grupos não tratados [ ]. Por isso, pode ser considerado como um remédio alternativo para a doença inflamatória intestinal (DII) e / ou a estratégia preventiva de sua recorrência em modelos de colite aguda induzida por ácido acético. Além disso, estudos anteriores documentaram que M. oleifera pode inibir seletivamente a produção de iNOS e COX-2 e inibir significativamente a secreção de NO e outros marcadores inflamatórios - incluindo PGE-2, TNF-α, IL-6 e IL-1β - em culas RAW264.7 induzidas por lipopolissacidos (LPS). Entretanto, pode induzir a produção de IL-10 em macrófagos estimulados por LPS de uma maneira dependente da dose, contribuindo assim para a supressão da via de sinalização de NF-kB [  ,  ]. Os novos glicosídeos fenólicos bioativos 4 - [(2- O -acetil-α- l-rhamnosyloxy) benzil] isotiocianato (RBITC) da M. oleifera inibiu a expressão de COX-2 e iNOS nos níveis de proteína e mRNA através da inibição das principais vias de sinalização a montante (MAPKs) e NF-κB [  ]. In vivo, um M. oleifera enriquecido com isotiocianatoO extrato de semente (MSE) mostrou uma redução no edema de pata induzido por carragenina, que é comparável à aspirina. In vitro, seu principal isotiocianato (MIC-1) na dose de 5 μM pode reduzir significativamente as citocinas inflamatórias. Além disso, o MIC-1 na dose de 10 μM também pode ter efeitos mais fortes, quando comparados à curcumina, na regulação positiva do fator nuclear (2 derivados do eritrócito), como 2 (Nrf2) genes alvo NAD (P) H: quinona oxidoredutase 1 ( NQO1), glutationa S-transferase pi 1 (GSTP1) e heme oxigenase 1 (HO-1) [  ].

Finalmente, em um estudo clínico de 15 pacientes com infecção do trato urinário, Maurya e Singh observaram que 66,67% dos pacientes estavam completamente curados de seus sintomas após um tratamento de três semanas com extrato de casca de M. oleifera , enquanto 13,33% relataram alívio moderado de seus sintomas. sintomas, 13,33% dos pacientes não apresentaram alteração dos sintomas e 6,67% recaíram no grupo experimental. No entanto, no grupo controle, 46,67% dos pacientes foram curados, 26,66% dos pacientes foram aliviados de seus sintomas, 6,67% dos pacientes não apresentaram alteração dos sintomas e 20% tiveram recidiva [  ]. Este estudo sugere que o extrato de casca de M. oleifera é eficaz na maioria dos sintomas cardinais da infecção do trato urinário. Estas descobertas apóiam ainda mais a aplicação tradicional de M. oleiferacomo um tratamento eficaz para a inflamação. Os mecanismos moleculares correspondentes estão resumidos na Figura 1 .

Um arquivo externo que contém uma figura, ilustração, etc. O nome do objeto é nutrients-10-00343-g001.jpg

Os mecanismos antiinflamatórios de M. oleifera. Diagrama esquemático ilustrando as vias de sinalização envolvidas no efeito inibitório de M. oleifera sobre proteínas associadas à inflamação induzida por LPS resumida de uma série de estudos anteriores [  ,  ,  ,  , 


]. Receptor Toll-like 4, TLR4; Nicotinamida adenina dinucleótido fosfato, NADPH; Inibidor de kappa B, IkB; Proteína derivada de células eritróides tipo Kelch com proteína 1 associada a ECH (homólogo de cap'n'collar), KEAP1. Lipopolissacarídeo, LPS; protenas quinases activadas por mitognio, MAPKs; quinase N-terminal c-Jun, p-JNK; cinase relacionada ao sinal extracelular, ERK; fator nuclear (derivado de eritróide 2) - como 2, Nrf2; fator nuclear-kappa B, NF-kB; NO sintase indutível: iNOS; ciclooxigenase-2, COX-2; fator de necrose tumoral alfa, TNF-α; interleucina-1 beta, IL-p; interleucina-6, IL-6; quinona oxidoredutase 1, NQO1; heme oxigenase 1, HO-1.

Validação Cientifica Antioxidante

4. Efeitos antioxidantes e hepatoprotetores

Normalmente, os compostos naturais ricos em polifenóis têm fortes propriedades antioxidantes e podem diminuir o dano oxidativo nos tecidos, eliminando os radicais livres [  ,  ,  ]. O extrato metanólico das folhas de M. oleifera contém ácido clorogênico, rutina, quercetina glucosídeo e kaempferol ramnoglicosídeo, enquanto que nas raízes e no caule do tronco são detectados vários picos de procianidina [  ]. Da mesma forma, o gênero Moringa possui alta atividade antioxidante principalmente devido ao seu alto conteúdo de polifenóis bioativos [  ,  ]. Felizmente, como planta medicinal, M. oleiferaextratos de folhas maduras e tenras exibem forte atividade antioxidante contra radicais livres e previnem danos oxidativos devido ao enriquecimento de polifenóis [  ].

A peroxidação lipídica (LPO) desempenha um papel importante no metabolismo do corpo, o que pode levar à lesão celular e danos nos nervos se os equilíbrios interno e externo forem quebrados. Em um modelo de camundongo albino suíço induzido por radiação com estresse oxidativo, o pré-tratamento com extrato de folhas de M. oleifera por 15 dias consecutivos pode efetivamente restaurar o nível de glutationa (GSH) e prevenir a peroxidação lipídica no fígado [  ,  ]. Este efeito protetor pode estar relacionado a uma variedade de fitoquímicos, como ácido ascórbico e fenóis (catequina, epicatequina, ácido ferúlico, ácido elágico e miricetina) através da remoção de radicais livres induzidos por radiação. Além disso, em um modelo de hepatotoxicidade induzida por paracetamol (PCM), a pré-administração do extrato hidro-etanólico deM. oleifera antes da administração oral de PCM na dose de 3 g / kg a ratos machos Sprague Dawley resulta numa redução significativa da peroxidação lipidica; Curiosamente, os níveis de glutationa-S transferase (GST), glutationa peroxidase (GPx) e glutationa redutase (GR) são restaurados para os níveis normais no grupo submetido à pré-administração do extrato de M. oleifera [  ]. Estes resultados são equivalentes ao controle positivo silimarina (200 mg / kg; po) e exibe resultados semelhantes a outras equipes de pesquisa [  ,  ]. Além disso, pós-tratamento oral diário com extrato de folhas de M. oleifera(100, 200 e 400 mg / kg de peso corporal) dos ratos com tetracloreto de carbono (CCl 4) Peroxidação lipídica induzida e dano hepático por 60 dias consecutivos podem proteger a hepatotoxicidade induzida por CCl 4 , o que pode ser devido à presença de fenóis e flavonóides totais no extrato e / ou nos compostos purificados como β-sitosterol, quercetina e kaempferol. [  ] Da mesma forma, achados anteriores também demonstraram que o pós-tratamento do extrato de folhas de M. oleifera por 28 dias consecutivos pode proteger da hepatotoxicidade induzida pelo cádmio dos ratos através da supressão da fosfatase alcalina elevada (ALP), transaminase glutâmica oxaloacética (aspartato aminotransferase, AST ), níveis de transaminase glutâmica piruvica (alanina aminotransferase, ALT) e LPO e aumento do nível de superóxido dismutase (SOD) [ ]. Além disso, a administração oral de extrato de M. oleifera também revela uma ação protetora significativa ao dano hepático induzido por drogas antituberculares, como isoniazida (INH), rifampicina (RMP) ou pirazinamida (PZA), como evidenciado pela AST recuperada. ALT, ALP e níveis de bilirrubina no soro, bem como a redução da peroxidação lipídica no fígado [  ]. O extrato de folhas de M. oleifera também pode efetivamente reduzir a lesão hepática induzida por dieta rica em gordura (HFD) em camundongos [  ]. Comparado com o grupo modelo, o tratamento com o extrato de folhas de M. oleiferaprotege o dano hepático induzido por HFD, como indicado por recusar a alteração histopatológica anormal e atividade de AST, ALT e ALP, e estimula um aumento significativo nos parâmetros antioxidantes endógenos [  ]. No geral, esses dados sugerem que o extrato de M. oleifera


 possui funções preventivas e curativas para o tecido hepático.

Validação Cientifica Efeito Neuroprotetor

Efeito Neuroprotetor

A demência - uma séria perda da capacidade cognitiva global, incluindo dificuldade de memória, atenção, linguagem e capacidade de resolução de problemas - é um distúrbio neurodegenerativo progressivo que está crescendo em todo o mundo devido ao aumento da população envelhecida [  ]. A doença de Alzheimer (DA) é a causa mais comum de demência, que é uma doença neurodegenerativa crônica irrecuperável. As EROs associadas ao estresse oxidativo podem induzir a apoptose celular por meio da disfunção mitocondrial e resultar no dano de lipídios, proteínas e DNA [  ,  ]. Estudos anteriores mostraram que o estresse oxidativo é considerado um fator primário em doenças neurodegenerativas, incluindo DA, doença de Parkinson (DP) e doença de Huntington (HD), assim como esclerose lateral amiotrófica (ELA) [ ]. Portanto, os antioxidantes ganharam ampla atenção como promissores agentes terapêuticos para doenças neurodegenerativas. Embora muitos esforços na descoberta de novos tratamentos para a DA tenham sido descobertos, nenhum dos tratamentos existentes demonstrou retardar ou interromper a progressão desta doença [  ]. Devido ao alto custo dos medicamentos anti-demência sintéticos e aos efeitos colaterais correspondentes, os produtos naturais contendo flavonóides ganharam um tremendo interesse como candidatos para a prevenção e / ou tratamento de distúrbios neurodegenerativos [  ,  ]. Acredita-se que o extrato das folhas de M. oleifera exiba atividade antioxidante e efeitos nootrópicos. De fato, o extrato alcoólico deAs folhas de M. oleifera podem combater o estresse oxidativo em um modelo de rato com DA induzida por colchicina [  ]. Em pré-tratamento com isotiocianato de 1-metil-4-fenil-1,2,3,6-tetrahidropiridina (MPTP) sub-aguda, o pré-tratamento com isotiocianato foi isolado do extrato de sementes de M. oleifera por uma semana não apenas modulou a via de sinalização da inflamação, mas também regulou as vias de sinalização associadas ao estresse oxidativo e à apoptose. A eficácia da M. oleifera no combate à via do sinal inflamatório tem sido corroborada pelos resultados in vitro, que podem ser usados ​​na prática clínica como uma droga útil para a prevenção ou tratamento da DP [  ].

M. oleifera foi mostrada para estimular a excrescência neuronal e a sobrevivência em condições de tratamento duras [  ,  ]. Por exemplo, uma concentração de 30 μg / mL de extrato etanólico das folhas de M. oleifera pode promover o desenvolvimento de neurites e a diferenciação neuronal de neurônios embrionários primários de maneira dependente da concentração [  ]. Da mesma forma, observou-se que o extrato de folhas de M. oleifera aumenta o número e o comprimento de dendritos e ramos axonais, o comprimento dos axônios e, eventualmente, facilita a sinaptogênese [  ]. Estudos anteriores também demonstraram que M. oleiferaextrato de folhas pode melhorar com sucesso a memória espacial e a neurodegeneração em regiões de amônia cornu 1 (CA1), CA2 e CA3, e giro denteado de tecidos do hipocampo [  ]. Mecanicamente, também pode diminuir os níveis de malondialdeído (MDA) e a atividade da acetilcolinesterase (AChE), mas pode aumentar a atividade da SOD e da catalase (CAT). Além disso, em comparação com o grupo isolado de alumínio, a administração de extrato de folhas de M. oleifera na dose de 300 mg / kg por 28 dias consecutivos em ratos com degeneração cortical temporal induzida por cloreto de alumínio protegeu contra a neurotoxicidade do córtex temporal de ratos diminuindo a expressão de enolase específica de neurônio (NSE) e proteína ácida fibrilar glial (GFAP) [  ].

À medida que mais pessoas lutam contra a depressão, um grave problema de saúde na maioria dos países, a necessidade de intervenção eficiente ou opções de tratamento é primordial. Devido aos efeitos colaterais dos antidepressivos durante a aplicação a longo prazo, é necessária a descoberta de remédios fitoterápicos antidepressivos mais seguros. O M. oleifera é um remédio em potencial para o tratamento de distúrbios do sistema nervoso que atuam como agente promotor da memória. Um estudo anterior [  ] em modelos padronizados de camundongos com depressão confirmou que o efeito antidepressivo do extrato alcoólico de folhas de M. oleifera pode ser invocado através da via de neurotransmissão noradrenérgica-serotoninérgica após a administração de M. oleifera.extrair a dose diária de 200 mg / kg associada à fluoxetina na dose diária de 10 mg / kg durante 14 dias consecutivos. Isto sugere que a administração combinatória de M. oleifera

 e fluoxetina ou outras drogas inibidoras da recaptação da serotonina (SSRI)


parece ter um potencial promissor.

Validação Cientifica Ciclo Menstrual e Capacidade Antibiótica

Antibiotic Activity. This is clearly the area in which the preponderance of evidence—both classical
scientific and extensive anecdotal evidence—is overwhelming. The scientific evidence has now been
available for over 50 years, although much of it is completely unknown to western scientists. In the
late 1940’s and early 1950’s a team from the University of Bombay (BR Das), Travancore University
(PA Kurup), and the Department of Biochemistry at the Indian Institute of Science in Bangalore (PLN
Rao), identified a compound they called pterygospermin [4] a compound which they reported readily
dissociated into two molecules of benzyl isothiocyanate [5] (23,24,25,26,77,78,79,80,81,108).
Benzyl isothiocyanate was already understood at that time to have antimicrobial properties. This
group not only identified pterygospermin, but performed extensive and elegant characterization of its
mode of antimicrobial action in the mid 1950’s. (They identified the tree from which they isolated this
substance as “Moringa pterygosperma,” now regarded as an archaic designation for “M. oleifera.”)
Although others were to show that pterygospermin and extracts of the Moringa plants from which it
was isolated were antibacterial against a variety of microbes, the identity of pterygospermin has
since been challenged (34) as an artifact of isolation or structural determination.
Subsequent elegant and very thorough work, published in 1964 as a PhD thesis by Bennie Badgett (a
student of the well known chemist Martin Ettlinger), identified a number of glyosylated derivatives of
benzyl isothiocyanate [5] (e.g. compounds containing the 6-carbon simple sugar, rhamnose) (8). The
identity of these compounds was not available in the refereed scientific literature until
“re-discovered” 15 years later by Kjaer and co-workers (73). Seminal reports on the antibiotic
activity of the primary rhamnosylated compound then followed, from U Eilert and colleagues in
Braunschweig, Germany (33,34). They re-isolated and confirmed the identity of
4-(-L-rhamnopyranosyloxy)benzyl glucosinolate [6] and its cognate isothiocyanate [2] and verified
the activity of the latter compound against a wide range of bacteria and fungi.
Extensive field reports and ecological studies (see Table 1) forming part of a rich traditional medicine
history, claim efficacy of leaf, seed, root, bark, and flowers against a variety of dermal and internal
infections. Unfortunately, many of the reports of antibiotic efficacy in humans are not supported by
placebo controlled, randomized clinical trials. Again, in keeping with Western medical prejudices,
practitioners may not be expected to embrace Moringa for its antibiotic properties. In this case,
however, the in-vitro (bacterial cultures) and observational studies provide a very plausible
mechanistic underpinning for the plethora of efficacy claims that have accumulated over the years
(see Table 1).
Aware of the reported antibiotic activity of [2], [5], and other isothiocyanates and plants containing
them, we undertook to determine whether some of them were also active as antibiotics against
Helicobacter pylori. This bacterium was not discovered until the mid-1980’s, a discovery for which
the 2005 Nobel Prize in Medicine was just awarded. H. pylori is an omnipresent pathogen of human
beings in medically underserved areas of the world, and amongst the poorest of poor populations
worldwide. It is a major cause of gastritis, and of gastric and duodenal ulcers, and it is a major risk
factor for gastric cancer (having been classified as a carcinogen by the W.H.O. in 1993). Cultures of
H. pylori, it turned out, were extraordinarily susceptible to [2], and to a number of other

1. Introduction

Moringa oleifera belonging to the family of Moringaceae is an effective remedy for malnutrition. Moringa is rich in nutrition owing to the presence of a variety of essential phytochemicals present in its leaves, pods and seeds. In fact, moringa is said to provide 7 times more vitamin C than oranges, 10 times more vitamin A than carrots, 17 times more calcium than milk, 9 times more protein than yoghurt, 15 times more potassium than bananas and 25 times more iron than spinach [1]. The fact that moringa is easily cultivable makes it a sustainable remedy for malnutrition. Countries like Senegal and Benin treat children with moringa [2]. Children deprived of breast milk tend to show symptoms of malnutrition. Lactogogues are generally prescribed to lactating mothers to augment milk production. The lactogogue, made of phytosterols, acts as a precursor for hormones required for reproductive growth. Moringa is rich in phytosterols like stigmasterol, sitosterol and kampesterol which are precursors for hormones. These compounds increase the estrogen production, which in turn stimulates the proliferation of the mammary gland ducts to produce milk. It is used to treat malnutrition in children younger than 3 years [3]. About 6 spoonfuls of leaf powder can meet a woman's daily iron and calcium requirements, during pregnancy. This study provides an overview on the cultivation, nutritional values, medicinal properties for commercial use and pharmacological properties of moringa. There are no elaborate reports on treatment of diabetes and cancer using moringa. This study aims to bridge the gap.

2. Plantation and soil conditions

M. oleifera can be grown in any tropical and subtropical regions of the world with a temperature around 25–35 °C. It requires sandy or loamy soil with a slightly acidic to slightly alkaline pH and a net rainfall of 250–3000 mm [4]. The direct seeding method is followed as it has high germination rates. Since moringa seeds are expected to germinate within 5–12 days after seeding and can be implanted at a depth of 2 cm in the soil. Moringa can also be propagated using containers. The saplings are placed in plastic bags containing sandy or loamy soil. After it grows to about 30 cm, it can be transplanted. However, utmost care has to be taken while transplanting as the tap roots are tender and tend to get affected. The tree can also be cultivated from cuttings with 1 m length and 4–5 cm in diameter, but these plants may not have a good deep root system. Such plants tend to be sensitive to drought and winds. For commercial purposes large scale intensive and semi-intensive plantation of moringa may be followed. In commercial cultivation, spacing is important as it helps in plant management and harvest. M. oleifera differs in nutrient composition at different locations [5]. The tree grown in India has slightly different nutritional components than a tree grown in Nigeria. Asante et al. [6] studied the nutritional differences in the leaves from two ecological locations semi-deciduous and Savannah regions. It showed that the latter was less nutritious than the former and attributed this to high temperatures at the Savannah regions. At higher temperature, proteins and enzymes get denatured and this could be the cause for the difference in nutrient content.

Soil is an important factor that defines nutrient content and strength of the plant. Dania et al. [7] showed that fertilizers when applied solely or in combination with others resulted in different nutrient compositions on plant parts. NPK fertilizer, poultry manure and organic base fertilizer was provided to study the effect on the nutrient content and found that poultry manure gave the best results than phosphorous, potassium, sodium and manganese. Likewise the stem girth and vegetative growth of moringa increased on application of poultry manure. The overall nutrient attributes of the plant remains same albeit nutrient variability. This makes moringa viable as a potential nutraceutical anywhere in the world.

3. Nutritive properties

Every part of M. oleifera is a storehouse of important nutrients and antinutrients. The leaves of M. oleifera are rich in minerals like calcium, potassium, zinc, magnesium, iron and copper [2]. Vitamins like beta-carotene of vitamin A, vitamin B such as folic acid, pyridoxine and nicotinic acid, vitamin C, D and E also present in M. oleifera[8]. Phytochemicals such as tannins, sterols, terpenoids, flavonoids, saponins, anthraquinones, alkaloids and reducing sugar present along with anti-cancerous agents like glucosinolates, isothiocyanates, glycoside compounds and glycerol-1-9-octadecanoate [9]. Moringa leaves also have a low calorific value and can be used in the diet of the obese. The pods are fibrous and are valuable to treat digestive problems and thwart colon cancer [10,62]. A research shows that immature pods contain around 46.78% fiber and around 20.66% protein content. Pods have 30% of amino acid content, the leaves have 44% and flowers have 31%. The immature pods and flowers showed similar amounts of palmitic, linolenic, linoleic and oleic acids [11].

Moringa has lot of minerals that are essential for growth and development among which, calcium is considered as one of the important minerals for human growth. While 8 ounces of milk can provide 300–400 mg, moringa leaves can provide 1000 mg and moringa powder can provide more than 4000 mg. Moringa powder can be used as a substitute for iron tablets, hence as a treatment for anemia. Beef has only 2 mg of iron while moringa leaf powder has 28 mg of iron. It has been reported that moringa contains more iron than spinach [12]. A good dietary intake of zinc is essential for proper growth of sperm cells and is also necessary for the synthesis of DNA and RNA. M. oleifera leaves show around 25.5–31.03 mg of zinc/kg, which is the daily requirement of zinc in the diet [13].

PUFAs are linoleic acid, linolenic acid and oleic acid; these PUFAs have the ability to control cholesterol. Research show that moringa seed oil contains around 76% PUFA, making it ideal for use as a substitute for olive oil [14]. A point to note is that the nutrient composition varies depending on the location. Fuglie [12] revealed that seasons influence the nutrient content. It was shown that vitamin A was found abundantly in the hot-wet season, while vitamin C and iron were more in the cool-dry season [15]. The difference in results can be attributed to the fact that the location, climate and the environmental factors significantly influence nutrient content of the tree [16]. A complete list of nutrients available in leaves, pods and seeds are shown in Table 1.

Table 1. The nutrient compositionsa of leaves, leaf powder, seeds and pods.

Nutrients Fresh leaves Dry leaves Leaf powder Seed Pods
Calories (cal) 92 329 205 26
Protein (g) 6.7 29.4 27.1 35.97 ± 0.19 2.5
Fat (g) 1.7 5.2 2.3 38.67 ± 0.03 0.1
Carbohydrate (g) 12.5 41.2 38.2 8.67 ± 0.12 3.7
Fibre (g) 0.9 12.5 19.2 2.87 ± 0.03 4.8
Vitamin B1 (mg) 0.06 2.02 2.64 0.05 0.05
Vitamin B2 (mg) 0.05 21.3 20.5 0.06 0.07
Vitamin B3 (mg) 0.8 7.6 8.2 0.2 0.2
Vitamin C (mg) 220 15.8 17.3 4.5 ± 0.17 120
Vitamin E (mg) 448 10.8 113 751.67 ± 4.41
Calcium (mg) 440 2185 2003 45 30
Magnesium (mg) 42 448 368 635 ± 8.66 24
Phosphorus (mg) 70 252 204 75 110
Potassium (mg) 259 1236 1324 259
Copper (mg) 0.07 0.49 0.57 5.20 ± 0.15 3.1
Iron (mg) 0.85 25.6 28.2 5.3
Sulphur (mg) 870 0.05 137

All values are in 100 g per plant material [12,52,60].

4. Processing of moringa

Most plants lose their nutritive properties when processed. When compared, the nutritive content of raw, germinated and fermented moringa seed flour, it was found that phytochemicals were higher in raw seed flour and amino acid content was at its peak in fermented and germinated seed flour [17,59]. This can be a result of the biochemical activities during germination and microbial activity during fermentation. However, a study reviewed the effect of boiling, simmering and blanching to see the retention of nutrient content of moringa leaves. Interestingly, boiling was the most effective of all the techniques as it reduced the cyanide, oxalate and phytate contents, more significantly than the other two methods. The presence of phytate and other anti-nutrients can reduce the bioavailability of certain nutrients and processing can hence be done for maximum utilization of required nutrients from the seeds and leaves [18,63]. Yang et al. [15] reported that boiling increased the availability of iron and antioxidant content. Hence, the processed moringa seed flour can be used to treat malnutrition problems. However, some studies have shown that children refuse to take in moringa due to its slight bitter taste [70]. Kiranawati et al. [19] designed moringa noodles by three methods of cooking noodles, sautéing, steaming and boiling. These noodles were tested on rats and the effects on mammary glands were studied. Interestingly, the sautéed noodles had a better effect on the mammary glands of rats and improved milk production. The effect of sautéing on the noodles improved lactogogum values, because the oil used was rich in sterols. M. oleifera have also been incorporated into chocolates. A recent report tested different percentages of moringa in the chocolate fortification and found that, 20% moringa incorporation in cocoa powder was ideal. Similarly, moringa incorporation in halawa tahinia also increased the nutrient value of the delicacy. Such studies have shown the potential for developing protein and minerals-rich chocolate and halawa tahinia [20]. Several such moringa fortifications are possible to ensure intake of adequate amounts of nutrients in children.

4.1. Preservation methods

Moringa can also be preserved for a long time without loss of nutrients. Drying or freezing can be done to store the leaves. A report by Yang et al. [15] shows that a low temperature oven used to dehydrate the leaves retained more nutrients except vitamin C than freeze-dried leaves. Hence, drying can be done using economical household appliance like stove to retain a continuous supply of nutrients in the leaves. Preservation by dehydration improves the shelf life of Moringa without change in nutritional value

An overdose of moringa may cause high accumulation of iron. High iron can cause gastrointestinal distress and hemochromatosis. Hence, a daily dose of 70 g of moringa is suggested to be good and prevents over accumulation of nutrients [21].

5. Medicinal properties

M. oleifera is often referred as a panacea and can be used to cure more than 300 diseases. Moringa has long been used in herbal medicine by Indians and Africans. The presence of phytochemicals makes it a good medicinal agent. In this section, the effect of moringa on diseases like diabetes and cancer are reviewed.

5.1. Anti-diabetic properties

Moringa has been shown to cure both Type 1 and Type 2 diabetes. Type 1 diabetes is one where the patients suffer from non-production of insulin, which is a hormone that maintains the blood glucose level at the required normal value. Type 2 diabetes is one associated with insulin resistance. Type 2 diabetes might also be due to Beta cell dysfunction, which fails to sense glucose levels, hence reduces the signaling to insulin, resulting in high blood glucose levels [22]. Several studies have shown that, moringa can act as an anti-diabetic agent. A study has shown that the aqueous extracts of M. oleifera can cure streptozotocin-induced Type 1 diabetes and also insulin resistant Type 2 diabetes in rats [23]. In another study, the researchers fed the STZ-induced diabetes rats with Moringa seed powder and noticed that the fasting blood glucose dropped [50]. Also, when the rats were treated with about 500 mg of moringa seed powder/kg body weight, the antioxidant enzymes increased in the serum. This shows that the antioxidants present in moringa can bring down the ROS caused in the Beta-cells due to the STZ induction [8]. STZ causes ATP dephosphorylation reactions and helps xanthine oxidase in the formation of superoxides and reactive oxygen species (ROS) in Beta cells [24]. In hyperglycemic patients, the beta cells get destructed (Fig. 1). Therefore, high glucose enters the mitochondria and releases reactive oxygen species. Since beta cells have low number of antioxidants, this in turn causes apoptosis of the beta cells [25,26]. This reduces insulin secretion leading to hyperglycemia and in turn diabetes mellitus Type-2. The flavonoids like quercitin and phenolics have been attributed as antioxidants that bring about a scavenging effect on ROS. It can be hypothesized that the flavonoids in Moringa scavenge the ROS released from mitochondria, thereby protecting the beta cells and in turn keeping hyperglycemia under control [27,50].

Fig. 1. Mechanism of high glucose leading to diabetes and the effect of moringa on progression of diabetes. The high glucose in blood enters glycolysis in the mitochondria of beta cells and forms reactive oxygen species. This then causes apoptosis of beta cells which in turn leads to decreased insulin secretion, hyperglycemia and finally Type-2 diabetes. However, the cell apoptosis of beta cells can be averted by the use of moringa. Moringa has antioxidants which combine with the reactive oxygen species and prevent cell damage and further consequences [8,22,25,50].


Diabetes leads to several complications such as retinopathy, nephropathy and atherosclerosis etc. Moringa can be used to prevent such ailments. When there is hyperglycemia, the blood glucose reacts with proteins and causes advanced glycated end products (AGEs). These AGEs bind to RAGE which gets expressed on the surface of immune cells. This interaction leads to increased transcription of cytokines like interleukin-6 and interferons. At the same time, the cell adhesion molecules are expressed on the surface endothelium of arteries [28]. This facilitates transendothelial migration which causes inflammation in the arteries and leads to atherosclerosis (Fig. 2). Moringa is used as an anti-atherosclerotic agent [29]. The anti-atherogenic nature can be accounted for by the antioxidant properties of moringa.

Fig. 2. Mechanism of diabetes leading to atherosclerosis and effect of moringa on the progression of atherosclerosis. High blood glucose due to glycolysis releases ROS, which then forms AGEs and LDLs. The LDLs can directly lead to inflammation, while the AGE when combined to RAGE expressed on cell surface, can cause expression of NFk-B. This can further lead to transcription of other cytokines and in turn inflammation. Inflammation causes transendothelial migration of immune cells and LDLs, leading to atherosclerosis. Moringa can prevent atherosclerosis by scavenging ROS and preventing the formation of AGE and LDL, thereby acting as an anti-atherosclerotic agent [8,24,28,29].


5.2. Anticancer properties

Cancer is a common disease and one in seven deaths is attributed due to improper medication. Around 2.4 million cases are prevalent in India, while there are no specific reasons for cancer to develop. Several factors like smoking, lack of exercise and radiation exposure can lead to the disease [69]. Cancer treatments like surgery, chemotherapy and radiation are expensive and have side effects. M. oleifera can be used as an anticancer agent as it is natural, reliable and safe, at established concentrations. Studies have shown that moringa can be used as an anti-neoproliferative agent, thereby inhibiting the growth of cancer cells. Soluble and solvent extracts of leaves have been proven effective as anticancer agents. Furthermore, research papers suggest that the anti-proliferative effect of cancer may be due to its ability to induce reactive oxygen species in the cancer cells. Researchs show that the reactive oxygen species induced in the cells leads to apoptosis. This is further proved by the up regulation of caspase 3 and caspase 9, which are part of the apoptotic pathway [30,31,64]. Moreover, the ROS production by moringa is specific and targets only cancer cells, making it an ideal anticancer agent. Tiloke et al. [30] also showed that the extracts increased the expression of glutathione-S-transferase, which inhibits the express of antioxidants. Anticancer agents targeting cancer using ROS induction are common, but these substances should also be able to attack the antioxidant enzymes [32]. However, Moringa leaf extracts have been shown to be antioxidants and anticancer agents which induce ROS. The exact behavior of the two contrary attributes of the leaves is yet to be explored. The compounds of the leaves that are held responsible for the anticancer activities are glucosinolates, niazimicin and benzyl isothiocyanate [33]. Benzyl isothiocyanate has been shown to be linked with cancer. Research shows that BITC causes intracellular ROS, which leads to cell death. This could be one of the reasons for moringa to be a good anticancer agent [34,35,65].

5.3. Other diseases

Moringa can be used as a potent neuroprotectant. Cerebral ischemia is caused due to obstruction of blood flow to the brain. This leads to reperfusion and lipid peroxidation, which in turn results in reactive oxygen species. Moringa with its antioxidants can reduce the reactive oxygen species, thereby protecting the brain [36,37]M. oleifera is used to treat dementia, as it has been shown to be a promoter of spatial memory. The leaf extracts have shown to decrease the acetylcholine esterase activity, thereby improving cholinergic function and memory [38]. Adeyemi et al. [39] showed that moringa in diet of rats, can increase protein content and decrease levels of urea and creatinine in blood, preventing renal dysfunction. Moringa decreased acidity in gastric ulcers by a percentage of 86.15% and 85.13% at doses of 500 mg and 350 mg, respectively and therefore can be used as an antiulcer agent [40]. Moringa is prescribed by herbal practitioners for patients with AIDS. Moringa is suggested to be included in the diet, with the view of boosting the immune system of HIV positive individuals. However, more research is essential to validate the effect of moringa on anti-retroviral drugs [41]. The hydro-alcoholic extract of moringa flowers reduced the levels of rheumatoid factor, TNF-alpha and IL-1 in arthritic rats. This proves that moringa can be a potent therapy for arthritis [42]. Microbial diseases are widespread and there is a need for antimicrobial agents, M. oleifera has been proven as a good antimicrobial agent [66]. A study by Viera et al. [43] has shown that the extracts of M. oleifera can act against bacteria like Bacillus subtilisStaphylococcus aureus and Vibrio cholera. The antibacterial effects of the seeds were accounted for by the presence of pterygospermin, moringine and benzyl isothiocyanate [67]Table 2 presents nutritional composition and medicinal uses of different parts of Moringa.

Table 2. Nutritional compositions and medicinal uses of different parts of Moringa.

Part of tree Medicinal uses Nutritive properties Suggestion References
Leaves Moringa leaves treat asthma, hyperglycemia, Dyslipidemia, flu, heart burn, syphilis, malaria, pneumonia, diarrhea, headaches, scurvy, skin diseases, bronchitis, eye and ear infections. Also reduces, blood pressure and cholesterol and acts as an anticancer, antimicrobial, Antioxidant, antidiabetic and anti-atherosclerotic agents, neuroprotectant Moringa leaves contain fiber, fat proteins and minerals like Ca, Mg, P, K, Cu, Fe, and S. Vitamins like Vitamin-A (Beta-carotene), vitamin B-choline, vitamin B1-thiamine, riboflavin, nicotinic acid and ascorbic acid are present. Various amino acids like Arg, His, Lys, Trp, Phe, Thr, Leu, Met, Ile, Val are present. Phytochemicals like tannins, sterols, saponins, trepenoids, phenolics, alkaloids and flavanoids like quercitin, isoquercitin, kaemfericitin, isothiocyanates and glycoside compounds are present The presence of flavanoids gives leaves the antidiabetic and antioxidant properties. The isothiocyanates are anticancer agents.
Flavanoids like quercitin and others are known for anti-proliferative, anticancer agent. The presence of minerals and vitamins help in boosting the immune system and cure a myriad of diseases
Seeds Seeds of moringa help in treating hyperthyroidism, Chrohn's disease, antiherpes-simplex virus arthritis, rheumatism, gout, cramp, epilepsy and sexually transmitted diseases, can act as antimicrobial and anti-inflammatory agents Contains oleic acid (Ben oil), antibiotic called pterygospermin, and fatty acids like Linoleic acid, linolenic acid, behenic acid, Phytochemicals like tannins, saponin, phenolics, phytate, flavanoids, terpenoids and lectins. Apart from these, fats, fiber, proteins, minerals, vitamins like A, B, C and amino acids The presence of flavanoids gives its anti-inflammatory property. The antibiotic pterygospermin is responsible for antimicrobial properties. The other phyto-chemicals help in treating various diseases [1,2,4,38,61]
Root Bark Root bark acts as a cardiac stimulant, anti-ulcer and anti-inflammatory agent Alkaloids like morphine, moriginine, minerals like calcium, magnesium and sodium The alkaloid helps the bark to be antiulcer, a cardiac stimulant and helps to relax the muscles [39,41]
Flower Moringa flowers act as hypocholesterolemic, anti-arthritic agents can cure urinary problems and cold It contains calcium and potassium and amino acids. They also contain nectar The presence of nectar makes them viable for use by beekeepers. [12,38]
Pods Moringa pods treat diarrhea, liver and spleen problems, and joint pain Rich in fiber, lipids, non-structural carbohydrates, protein and ash. Fatty acids like oleic acid, linoleic acid, palmitic acid and linolenic acid are also present The presence of PUFA in the pods can be used in the diet of obese [12]

6. Commercial applications

Moringa seeds are used to extract oil called the Ben oil. This oil is rich in oleic acid, tocopherols and sterols. It can also withstand oxidative rancidity. The oil can be used in cooking as a substitute for olive oil, as perfumes and also for lubrication [14,44]. The pods can absorb organic pollutants and pesticides. Moringa seeds also have great coagulant properties and can precipitate organics and mineral particulates out of a solution [1,53]. Chemical coagulants such as aluminum sulfate (Alum) and ferric sulfate or polymers removes suspended particles in waste water by neutralizing the electrical charges of particles in the water to form flocs making particles filterable. M. oleifera seed is a natural coagulant, containing a cationic protein that can clarify turbid water. This property of M. oleifera seeds is attracting much research as other coagulants such as alum, activated carbon and ferric chloride are expensive and rare [58]. Suhartini et al. [45] developed a two-stage clarifier for the treatment of tapioca starch waste water by placing coconut fiber followed by a layer of sand media mixed with powdered M. oleifera, this lead to improvement on physical and chemical characteristics, stabilizing pH value. Moringa seed extract has the ability to eliminate heavy metals (such as lead, copper, cadmium, chromium and arsenic) from water [46]M. oleifera functionalized with magnetic nanoparticles such as iron oxide were found beneficial in surface water treatment by lowering settling time [55]. Seed extracts have antimicrobial properties that inhibit bacterial growth, which implies preventing waterborne diseases. These properties of M. oleifera seeds have wide applicability in averting diseases and can enhance the quality of life in rural communities as it is highly abundant.

Moringa seeds can be used in cosmetics and are sources of biodiesel while the seedcakes, can be used as a green manure or a fertilizer. The flowers of moringa are used to make tea with hypocholesterolemic properties. Moringa flowers are said to taste like mushrooms when fried [68]. The moringa flowers are great sources of nectar and are used by beekeepers. The root bark has medicinal values and is used for dyspepsia, eye diseases and heart complaints [51]. The tap root of Moringa is used as a spice. The gum from the tree can be used in calicoprinting. The gum and roots also have antibacterial, antifungal and anti-inflammatory properties [54]. The growth hormone from the leaves, called Zeatin is an excellent foliar and can increase the crop yield by 25%–30% [12]. Incorporation and fortification of moringa can be significant to tackle nutrient deficiencies and malnutrition. Studies have tried fortifying moringa in snacks. Aluko et al. [47] did a sensory evaluation on cookies made from a mix of maize flour and moringa seed flour. The flour was mixed with different percentages of the two flours and the best acceptance was for 92.5% maize and 7.5% moringa seed flour combination. This was well accepted due to its crispness, aroma, taste and color. Cereal gruels have also been fortified by moringa leaves in order to improve the protein content and energy. The cereal gruel with 65% popcorn and 35% moringa leaves was blanched and fermented. The fermented ones showed higher protein and energy while the blanched cereal had higher mineral content [48]. Owusu et al. [49] also used moringa as a fortificant and produced cream and butter crackers with moringa and Ipomoea batatas as fortificants, with the hope of adding additional nutrients to snacks. The sensory evaluation proved the cream crackers to be widely accepted. M. oleifera leaves can be incorporated in the diet of hens and layers thereby providing excellent protein source, substituting other expensive ingredients such as soybean meal and ground nut cake [56,57].

Considering the views of several such fortifications, it is suggested that such addition can be done to other snacks as well. Addition of moringa to the snacks can add nutritive value to the snacks. Most snacks are made up of corn meal and several studies demonstrated that a little addition of moringa to maize flour can add nutritive value to the snack in terms of protein, energy and minerals. However, further studies on moringa as a fortified Indian snack is required before bringing commercialized moringa to the market.

7. Conclusion and future prospects

The research on M. oleifera is yet to gain importance in India. It is essential that the nutrients of this wonder tree are exploited for a variety of purposes. M. oleifera has great anti-diabetic and anti-cancer properties. However, double blind researches are less prevalent to further substantiate these properties of moringa. More studies are needed to corroborate the primary mechanisms of moringa as antidiabetic and anticancer agents. Several puzzling questions are unanswered. Research on the antioxidant nature of aqueous extracts on cancer cells needs further inquiry. Studies have proven that moringa causes ROS in cancer cells that leads to apoptosis or necrosis. However, the aqueous extracts also have antioxidants present in them. The exact mechanism of this irony is yet to be explored. The effect of environmental factors affecting the nutrient levels of leaves and other parts of M. oleifera grown across the globe require further analysis.

Further research to isolate endophytic fungi and identify the enzymes or proteins from M. oleifera that are accountable for the anticancer and antidiabetic activity may lead to development of novel therapeutic compounds. Yet another focal area is to evaluate the commercial use of M. oleifera as a bio-coagulant. It might be a viable alternative for water purification. The demand for snacks in the market is huge. Hence Moringa fortification in snacks to eradicate malnutrition has a twin advantage. The tree as a native to India can become a great source of income for the nation if this potential for highly nutritional food is exploited by the industries and researchers by undertaking further research to corroborate earlier studies.


The authors sincerely thank Director Indian Institute of Technology Hyderabad for their continued encouragement and support. LG thanks DSK for constant support and valuable suggestions in completing this manuscript.


J.L. Rockwood, B.G. Anderson, D.A. CasamattaPotential uses of Moringa oleifera and an examination of antibiotic efficacy conferred by M. oleifera seed and leaf extracts using crude extraction techniques available to underserved indigenous populations
Int. J. Phytothearpy Res., 3 (2013), pp. 61-71
J.N. Kasolo, G.S. Bimenya, L. Ojok, J. Ochieng, J.W. Ogwal-okengPhytochemicals and uses of Moringa oleifera leaves in Ugandan rural communities
J. Med. Plants Res., 4 (2010), pp. 753-757
T. Mutiara Titi, E.S.W. EstiasihEffect lactagogue moringa leaves (Moringa oleifera Lam) powder in rats
J. Basic Appl. Sci. Res., 3 (2013), pp. 430-434
M.D. Thurber, J.W. FaheyAdoption of Moringa oleifera to combat under-nutrition viewed through the lens of the diffusion of innovations theory
Ecol. Food Sci. Nutr., 48 (2010), pp. 1-13
M.F. Aslam, R. Anwar, U. Nadeem, T.G. Rashid, A. Kazi, M. NadeemMineral composition of Moringa oleifera leaves and pods from different regions of Punjab, Pakistan
Asian J. Plant Sci., 4 (2005), pp. 417-421
W.J. Asante, I.L. Nasare, D. Tom-Dery, K. Ochire-Boadu, K.B. KentilNutrient composition of Moringa oleifera leaves from two agro ecological zones in Ghana
African J. Plant, 8 (2014), pp. 65-71
S.O. Dania, P. Akpansubi, O.O. EghagaraComparative Effects of different fertilizer sources on the growth and nutrient content of moringa (Moringa oleifera) seedling in a greenhouse trial
Pharma. Clin. Res., 5 (2014), pp. 67-72
M. MbikayTherapeutic potential of Moringa oleifera leaves in chronic hyperglycemia and dyslipidemia: a review
Front. Pharmacol., 3 (2012), pp. 1-12
L. Berkovich, G. Earon, I. Ron, A. Rimmon, A. Vexler, S. Lev-AriMoringa oleifera aqueous leaf extract down-regulates nuclear factor-kappaB and increases cytotoxic effect of chemotherapy in pancreatic cancer cells
BMC Complement. Altern. Med., 13 (2013), pp. 212-219
I. Oduro, W.O. Ellis, D. OwusuNutritional potential of two leafy vegetables: Moringa oleifera and Ipomoea batatas leaves
Sci. Res. Essays, 3 (2008), pp. 57-60
D.I. Sánchez-Machado, J.A. Núñez-Gastélum, C. Reyes-Moreno, B. Ramírez-Wong, J. López-CervantesNutritional quality of edible parts of Moringa oleifera
Food Anal. Methods, 3 (2010), pp. 175-180
L.J. FuglieThe Moringa Tree: A local solution to malnutrition Church World Service in Senegal
J.T. Barminas, M. Charles, D. EmmanuelMineral composition of non-conventional leafy vegetables
Plant Foods Hum. Nutr., 53 (1998), pp. 29-36
S. Lalas, J. TsaknisCharacterization of Moringa oleifera seed oil variety Periyakulam-1
J. Food Compos. Anal., 15 (2002), pp. 65-77
R. Yang, L. Chang, J. Hsu, B.B.C. Weng, C. Palada, M.L. Chadha, V. LevasseurNutritional and functional properties of moringa leaves from germplasm, to plant, to food, to health
Am. Chem. Soc. (2006), pp. 1-17
B. Moyo, P. Masika, A. Hugo, V. MuchenjeNutritional characterization of Moringa (Moringa oleifera Lam.) leaves
African J. Biotechnol., 10 (2011), pp. 12925-12933
O.S. Ijarotimi, O. Adeoti, O. AriyoComparative study on nutrient composition, phytochemical, and functional characteristics of raw, germinated, and fermented Moringa oleifera seed flour
Food Sci. Nutr., 1 (2013), pp. 452-463
B. Sallau, S.B. Mada, S. Ibrahim, U. IbrahimEffect of boiling, simmering and blanching on the antinutritional content of Moringa oleiferaleaves
Int. J. Food Nutr. Saf., 2 (2012), pp. 1-6
T.M. Kiranawati, N. NurjanahImprovement of noodles recipe for increasing breastmilk: design of the Moringa noodles
Am. J. Food Sci. Technol., 2 (2014), pp. 88-92
A.A. Abou-zaid, A.S. NadirQuality evaluation of nutritious chocolate and halawa tahinia produced with moringa (Moringa oleifera) leaves powder
Middle East J. Appl. Sci., 4 (2014), pp. 1007-1015
I.J. Asiedu-Gyekye, S. Frimpong-Manso, C. Awortwe, D.A. Antwi, A.K. NyarkoMicro- and macroelemental composition and safety evaluation of the nutraceutical Moringa oleifera leaves
J. Toxicol., 2014 (2014), pp. 1-13
M.E. CerfBeta cell dysfunction and insulin resistance
Front. Endocrinol., 4 (2013), pp. 1-12
S.M. Divi, R. Bellamkonda, S.K. DasireddyEvaluation of antidiabetic and antihyperlipedemic potential of aqueous extract of Moringa oleiferain fructose fed insulin resistant and STZ induced diabetic wistar rats: a comparative study
Asian J. Pharm. Clin. Res., 5 (2012), pp. 67-72
E. Wright, J.L. Scism-Bacon, L.C. GlassOxidative stress in type 2 diabetes: the role of fasting and postprandial glycaemia
Int. J. Clin. Pract., 60 (2006), pp. 308-314
H. Kaneto, Y. Kajimoto, J. Miyagawa, T. Matsuoka, Y. Fujitani, Y. Umayahara, T. Hanafusa, Y. Matsuzawa, Y. Yamasaki, M. HoriBeneficial effects of antioxidants in diabetes: possible protection of pancreatic β-cells against glucose toxicity
Diabetes, 48 (1999), pp. 2398-2406
M. Prentki, C.J. NolanIslet β cell failure in type 2 diabetes
J. Clin. Invest., 116 (2006), pp. 1802-1812
N. Kamalakkannan, P.S.M. PrinceAntihyperglycaemic and antioxidant effect of rutin, a polyphenolic flavonoid, in streptozotocin-induced diabetic wistar rats
Basic Clin. Pharmacol. Toxicol., 98 (2006), pp. 97-103
D. Aronson, E.J. RayfieldHow hyperglycemia promotes atherosclerosis: molecular mechanisms
Cardiovasc. Diabetol., 1 (2002), p. 1
P. Chumark, P. Khunawat, Y. Sanvarinda, S. Phornchirasilp, N.P. Morales, L. Phivthongngam, P.Ratanchamnong, S. Srisawat, K.U. PongrapeepornThe in vitro and ex vivo antioxidant properties, hypolipidaemic and antiatherosclerotic activities of water extract of Moringa oleifera Lam. leaves
J. Ethnopharmacol., 116 (2008), pp. 439-446
C. Tiloke, A. Phulukdaree, A.A. ChuturgoonThe antiproliferative effect of Moringa oleifera crude aqueous leaf extract on cancerous human alveolar epithelial cells
BMC Complement. Altern. Med., 13 (2013), pp. 226-233
I.L. JungSoluble extract from Moringa oleifera leaves with a new anticancer activity
PLOS ONE, 9 (2014), pp. 1-10
G.Y. Liou, P. StorzReactive oxygen species in cancer
Free Radic. Res., 44 (2010), pp. 479-496
A. Hermawan, K.A. Nur, Sarmoko, D. Dewi, P. Putri, E. MeiyantoEthanolic extract of Moringa oleifera increased cytotoxic effect of doxorubicin on HeLa cancer cells
J. Nat. Remedies, 12 (2012), pp. 108-114
Y. Nakamura, M. Kawakami, A. Yoshihiro, N. Miyoshi, H. Ohigashi, K. Kawai, et al.Involvement of the mitochondrial death pathway in chemo preventive benzyl isothiocyanate-induced apoptosis
J. Biol. Chem., 277 (2002), pp. 8492-8499
N. Miyoshi, K. Uchida, T. Osawa, Y. NakamuraA link between benzyl isothiocyanate-induced cell cycle arrest and apoptosis: involvement of mitogen-activated protein kinases in the Bcl-2 phosphorylation
Cancer Res., 64 (2004), pp. 2134-2142
K. Baker, C.B. Marcus, K. Huffman, H. Kruk, B. Malfroy, S.R. DoctrowSynthetic combined superoxide dismutase/catalase mimetics are protective as a delayed treatment in a rat stroke model: a key role for reactive oxygen species in ischemic brain injury
J. Pharmacol. Exp. Ther., 284 (1998), pp. 215-221
W. Kirisattayakul, J. Wattanathorn, T. Tong-Un, S. Muchimapura, P. Wannanon, J. JittiwatCerebroprotective effect of Moringa oleifera against focal ischemic stroke induced by middle cerebral artery occlusion
Oxid. Med. Cell. Longev., 2013 (2013), pp. 10-13
C. Sutalangka, J. Wattanathorn, S. Muchimapura, W. Thukham-meeMoringa oleifera mitigates memory impairment and neurodegeneration in animal model of age-related dementia
Oxid. Med. Cell. Longev., 2013 (2013), pp. 1-9
O.S. Adeyemi, T.C. ElebiyoMoringa oleifera supplemented diets prevented nickel-induced nephrotoxicity in Wistar rats
J. Nutr. Metab., 2014 (2014), pp. 1-8
M.K. Choudhary, S.H. Bodakhe, S.K. GuptaAssessment of the antiulcer potential of Moringa oleifera root-bark extract in rats
JAMS J. Acupunct. Meridian Stud., 6 (2013), pp. 214-220
T.G. Monera, C.C. MapongaPrevalence and patterns of Moringa oleifera use among HIV positive patients in Zimbabwe: a cross-sectional survey
J. Public Health Africa, 3 (2012), pp. 6-8
G.S. Mahajan, A.A. MehtaAnti-arthritic activity of hydroalcoholic extract of flowers of Moringa oleifera lam. in Wistar rats
J. Herbs Spices Med. Plants, 15 (2009), pp. 149-163
G.H.F. Viera, J.A. Mourão, Â.M. Ângelo, R.A. Costa, R.H.S.D.F. VieiraAntibacterial effect (in vitro) of Moringa oleifera and Annona muricata against Gram positive and Gram negative bacteria
Rev. Inst. Med. Trop. Sao Paulo, 52 (2010), pp. 129-132
J. FaheyMoringa oleifera: a review of the medical evidence for its nutritional, therapeutic, and prophylactic properties
Trees Life J., 1 (2005), pp. 1-33
S. Suhartini, N. Hidayat, E. RosalianaInfluence of powdered Moringa oleifera seeds and natural filter media on the characteristics of tapioca starch wastewater
Int. J. Recycl. Org. Waste Agric., 2 (2013), pp. 1-11
K. Ravikumar, A.K. SheejaHeavy metal removal from water using Moringa oleifera seed coagulant and double filtration
Int. J. Sci. Eng. Res., 4 (2013), pp. 10-13
O. Aluko, M.R. Brai, A.O. AdeloreMaterials evaluation of sensory attributes of snack from maize-moringa seed flour blends
Int. J. Innov. Res. Sci. Eng. Technol., 7 (2013), pp. 597-599
I.O. Steve, O.I. BabatundeChemical compositions and nutritional properties of popcorn-based complementary foods supplemented with Moringa oleifera
Leaves Flour, 2 (2013), pp. 117-132
D. Owusu, I. OduroDevelopment of crackers from cassava and sweetpotato flours using Moringa oleifera and Ipomoea batatas leaves as fortificant
Am. J. Food Nutr., 1 (2011), pp. 114-122
A.L. Al-Malki, H.A. El RabeyThe antidiabetic effect of low doses of Moringa oleifera Lam. seeds on streptozotocin induced diabetes and diabetic nephropathy in male rats
Biomed. Res. Int., 2015 (2015), pp. 1-13
O.E. Adejumo, A.L. Kolapo, A.O. FolarinMoringa oleifera Lam. (Moringaceae) grown in Nigeria: in vitro antisickling activity on deoxygenated erythrocyte cells
J. Pharm. Bioall. Sci., 4 (2012), pp. 118-122
P.T. Olagbemide, P.C. AlikweProximate analysis and chemical composition of raw and defatted Moringa oleifera kernel
Adv. Life Sci. Technol., 24 (2014), pp. 92-99
M. Lurling, W. BeekmanAnticyanobacterial activity of Moringa oleifera seeds
J. Appl. Phycol., 23 (2010), pp. 503-510
L.P. Shank, T. Riyathong, V.S. Lee, S. DheeranupattanaPeroxidase activity in native and callus culture of Moringa oleifera Lam
J. Med. Bioeng., 2 (2013), pp. 163-167
T.R. Santos, M.F. Silva, L. Nishi, A.M. Vieira, M.R. Klein, M.B. Andrade, M.F. Vieira, R. BergamascoDevelopment of a magnetic coagulant based on Moringa oleifera seed extract for water treatment
Env. Sci. Pollut. Res. (2016), pp. 1-9
K.J. RaphaëlEffects of substituting soybean with Moringa oleifera meal in diets on laying and eggs quality characteristics of KABIR chickens
J. Anim. Nutr., 1 (2015), pp. 1-6
T.S. Olugbemi, S.K. Mutayoba, F.P. LekuleEffect of Moringa (M. oleifera) inclusion in cassava based diets fed to broiler chickens
Int. J. Poult. Sci., 9 (2010), pp. 363-367
M.E. Sengupta, B. Keraita, A. Olsen, O.K. Boateng, S.M. Thamsborg, G.R. Pálsdóttir, A. DalsgaardUse of Moringa oleifera seed extracts to reduce helminth egg numbers and turbidity in irrigation water
Water Res., 46 (2012), pp. 3646-3656
S.P. Mishra, P. Singh, S. SinghProcessing of Moringa oleifera leaves for human consumption
Bull. Environ. Pharmacol. Life Sci., 2 (2012), pp. 28-31
Moringa Leaf Powder: A nutritional analysis of leaf powder.
S. Nair, K.N. VaralakshmiAnticancer, cytotoxic potential of Moringa oleifera extracts on HeLa cell line
J. Nat. Pharm., 2 (2011), pp. 138-142
I. Oduro, W.O. Ellis, D. OwusuNutriional potential of two leafy vegetables: Moringa oleifera and Ipomoea batatas leaves
Sci. Res. Essays, 3 (2008), pp. 57-60
F. Kachik, B.G. Mudlagiri, R.B. Gary, H. Joanne, W.R. Lusby, D.T. Maria, M.R. BarreraEffects of food preparation on qualitative and quantitative distribution of major carotenoids constituents of tomatoes and several green vegetables
J. Agric. Food Chem., 40 (1992), pp. 390-398
S. Leelawat, K. LeelawatMoringa olefiera extracts induce cholangiocarcinoma cell apoptosis by induction of reactive oxygen species production
Int. J. Pharmacogn. Phytochem. Res., 6 (2014), pp. 183-189
Y.J. Lee, E. ShacterOxidative stress inhibits apoptosis in human lymphoma cells
J. Biol. Chem., 274 (1999), pp. 19792-19798
M. Chen, R.P. VerdesElucidation of bactericidal effects incurred by Moringa oleifera and Chitosan
J US SJWP, 4 (2009), pp. 65-79
S.A. Jahn, H.A. Musnad, H. BurgstallerThe tree that purifies water: cultivating multipurpose Moringaceae in the Sudan
Unasylva, 38 (1986), pp. 23-28
A.K. Arise, R.O. Arise, M.O. Sanusi, O.T. Esan, S.A. OyeyinkaEffect of Moringa oleifera flower fortification on the nutritional quality and sensory properties of weaning food
Croat. J. Food Sci. Technol., 6 (2014), pp. 65-71
M.K. Nair, C. Varghese, R. SwaminathanCancer current scenario, intervention strategies and projections for 2015
Burd. Dis. India (2005), pp. 219-225
V.S. Nambiar, S. ParnamiStandardization and organoleptic evaluation of drumstick (Moringa oleifera) leaves incorporated into traditional Indian recipes
Trees, 3 (2008), pp. 1-7

Peer review under responsibility of Beijing Academy of Food Sciences.